Syer Line Industrial
 Township of Cavan Monaghan
 County of Peterborough

Traffic Impact Study for Township of Cavan Monaghan

Type of Document:
Final Report

Project Number:
JDE - 21179
Date Submitted: March 21 ${ }^{\text {st }}, 2022$

John Northcote, P.Eng.
Professional License \#: 100124071

JD Northcote Engineering Inc.
86 Cumberland Street
Barrie, ON
705.725.4035

ENGINEERING
www.JDEngineering.ca

Legal Notification

This report was prepared by JD Northcote Engineering Inc. for the account of Township of Cavan Monaghan.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. JD Northcote Engineering Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

This traffic impact study was prepared in support of the proposed rezoning of an undeveloped property [Subject Site], for use as light industrial / employment uses. The Subject Site is located on the north side of Syer Line midblock between County Road 10 and Hutchinson Drive in the Township of Cavan Monaghan [Township], County of Peterborough [County]. This report assesses the impact of traffic related to the proposed development on the adjacent roadway and provides recommendations to accommodate this traffic in a safe and efficient manner.

The proposed development within the Subject Site is anticipated to include one full-movement access roadway onto Syer Line [Street A].

The scope of this analysis includes a review of the following intersections:

- Highway 115 SB Ramp \& Syer Line / County Road 10;
- Highway 115 NB Ramp \& Syer Line / County Road 10; and
- Syer Line / Street A.

Conclusions

1. The proposed development is expected to generate a total of 88 AM and 80 PM peak hour trips.
2. Detailed turning movement counts and pedestrian counts were obtained from the MTO at the following intersections Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10, completed on Tuesday, October 30th, 2018. Detailed turning movement traffic and pedestrian counts were also completed at the Larmer Line / County Road 10 intersection, completed on Tuesday, April $25^{\text {th }}, 2017$.
3. An intersection operation analysis was completed at the study area intersections, using the existing (2022) and background $(2027,2032$ and 2037) traffic volumes without the proposed development traffic. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. The following improvements are recommended:

Background (2027) Traffic Volumes

- Highway 115 SB Ramp \& Syer Line / County Road 10
- Installation of traffic signals.
- Highway 115 NB Ramp \& Syer Line / County Road 10
- Installation of traffic signals.

Background (2032) Traffic Volumes

- Highway 115 SB Ramp \& Syer Line / County Road 10
- Widen the SB Off-Ramp for the construction of a westbound left turn lane with 150 metre storage length, 40 parallel length and 100 metre taper length and
- Adjust signal to accommodate a protected + permissive westbound left turn phase.
- Highway 115 NB Ramp \& Syer Line / County Road 10
- Widen the County Road 10, north of the Highway 115 NB Ramp to provide two southbound lanes. The southbound configuration at the intersection should include a through + left lane and a through + right lane.

4. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area streets and intersections.
5. An intersection operation analysis was completed under total (2027, 2032 and 2037) traffic volumes with the proposed development operational at the study area intersections. No additional improvements are recommended within the study area.
6. It is recommended the MTO and County monitor the queuing on County Road 10 and on the Highway 115 ramps as the future Millbrook developments become fully built-out and occupied, to determine if infrastructure improvements are warranted noted for the 2027 and 2032 horizon years.
7. Street A will operate efficiently with full-movement access, with one-way stop control for southbound movements. A single ingress and egress lane at Street A will provide the necessary capacity to service the proposed development.
8. The available sight distance at Street A is sufficient for the intended use.
9. In summary, the proposed development will not cause any operational issues and will not add significant delay or congestion to the local roadway network.

Table of Contents

1 Introduction 1
1.1 Background 1
1.2 Study Area 1
1.3 Study Scope and Objectives 3
1.4 Horizon Year and Analysis Periods 3
2 Information Gathering 3
2.1 Street and Intersection Characteristics 3
2.2 Local Transportation Infrastructure Improvements 5
2.3 Transit Access 5
2.4 Other Developments within the Study Area 5
2.4.1 Towerhill Developments Phase 2 7
2.4.2 Vargas Development 7
2.4.3 Bromont Development 7
2.4.4 Millbrook Fire Hall 8
2.4.5 Syer West Development, Syer East Development \& CR10 Development 9
2.5 Background Traffic Growth 21
2.6 Traffic Counts 21
2.7 Horizon Year Traffic Volumes 22
3 Intersection Operation without Proposed Development 27
3.1 Introduction 27
3.2 Existing (2022) Intersection Operation 28
3.3 Background (2027) Intersection Operation 29
3.4 Background (2032) Intersection Operation 30
3.5 Background (2037) Intersection Operation 32
4 Proposed Development Traffic Generation and Assignment 34
4.1 Traffic Generation 34
4.2 Traffic Assignment 34
4.3 Total Horizon Year Traffic Volumes with the Proposed Development 35
5 Intersection Operation with Proposed Development 40
5.1 Total (2027) Intersection Operation 40
5.2 Total (2032) Intersection Operation 41
5.3 Total (2037) Intersection Operation 42
5.4 Site Access 43
5.5 Sight Distance Review 43
6 Summary 44
List of Tables
Table 1 - Adjacent Development Traffic Distribution (Residential) 8
Table 2 - Adjacent Development Traffic Distribution (Existing Traffic) 8
Table 3 - Estimated Traffic Generation for Syer West, Syer East \& CR10 Development 9
Table 4 - Traffic Count Data 21
Table 5 - Level of Service Criteria for Intersections. 27
Table 6 - Existing (2022) LOS 28
Table 7 - Background (2027) LOS 29
Table 8 - Background (2027) LOS with Improvements 30
Table 9 - Background (2032) LOS 31
Table 10 - Background (2032) LOS with Improvements 32
Table 11 - Background (2037) LOS 33
Table 12 - Estimated Traffic Generation of Proposed Development 34
Table 13 - Proposed Development Traffic Distribution. 35
Table 14 - Total (2027) LOS 40
Table 15 - Total (2032) LOS 41
Table 16 - Total (2037) LOS 42
List of Figures
Figure 1 - Proposed Site Location and Study Area 2
Figure 2 - Existing (2022) Intersection Spacing and Lane Configuration within Study Area 4
Figure 3 - Adjacent Development Locations 6
Figure 6 - Adjacent Development - Bromont Development Traffic Volumes (2027) 10
Figure 7 - Adjacent Development - Bromont Development Traffic Volumes (2032 / 2037) 11
Figure 4 - Adjacent Development (Bromont TIS) Traffic Volumes (2027) 12
Figure 5 - Adjacent Development (Bromont TIS²) Traffic Volumes (2032 / 2037) 13
Figure 8 - Adjacent Development - Millbrook Fire Hall Traffic Volumes (2027) 14
Figure 9 - Adjacent Development - Syer West Development Traffic Volumes (2032) 15
Figure 10 - Adjacent Development - Syer East Development Traffic Volumes (2037) 16
Figure 11 - Adjacent Development - CR10 Development Traffic Volumes (2037) 17
Figure 12 - Total Net Adjacent Development Traffic Volumes (2027) 18
Figure 13 - Total Net Adjacent Development Traffic Volumes (2032) 19
Figure 14 - Total Net Adjacent Development Traffic Volumes (2037) 20
Figure 15 - Existing (2022) Traffic Volumes 23
Figure 16 - Background (2027) Traffic Volumes 24
Figure 17 - Background (2032) Traffic Volumes 25
Figure 18 - Background (2037) Traffic Volumes 26
Figure 19 - Proposed Development Traffic Assignment 36
Figure 20 - Total (2027) Traffic Volumes 37
Figure 21 - Total (2032) Traffic Volumes 38
Figure 22 - Total (2037) Traffic Volumes 39

List of Appendices

APPENDIX A - Subject Site - Property Boundary
APPENDIX B - Adjacent Development Reports
APPENDIX C - Traffic Count Data
APPENDIX D - Synchro Analysis Output - Existing Traffic Volumes
APPENDIX E - Synchro Analysis Output - Background Traffic Volumes
APPENDIX F - Synchro Analysis Output - Total Traffic Volumes
APPENDIX G - MTO Left Turn Analysis
APPENDIX H - OTM Signal Justification Sheets
APPENDIX I - Transportation Tomorrow Survey - Excerpt

1 Introduction

1.1 Background

The Township of Cavan Monaghan is reviewing the impact of a proposed rezoning of an undeveloped property, for use as light industrial / employment lands [Subject Site]. The Subject Site is located on the north side of Syer Line midblock between County Road 10 and Hutchinson Drive in the Township of Cavan Monaghan [Township], County of Peterborough [County].

The proposed development within the Subject Site is anticipated to include one full-movement access roadway onto Syer Line [Street A].

The Township has retained JD Northcote Engineering Inc. [JD Engineering] to prepare this traffic impact study in support of the proposed rezoning of the Subject Site.

1.2 Study Area

Figure 1 shows the location of the subject site and study area intersections in relation to the surrounding area. A plan for the proposed layout of the proposed development of the Subject Site has not been completed at this time. The location of Street A has been provided for conceptual purposes and to allow for a review of the impact of the proposed development traffic on Syer Line.

The subject site is bound by Syer Line to the south, Highway 115 to the north, existing residential and RV dealership to the west and agricultural lands to the east.

Based on our correspondence with the Township and the Ontario Ministry of Transportation [MTO], the following intersections are included in the traffic impact study:

- Highway 115 SB Ramp \& Syer Line / County Road 10;
- Highway 115 NB Ramp \& Syer Line / County Road 10; and
- Syer Line / Street A.

Figure 1 - Proposed Site Location and Study Area

ENGINEERING

1.3 Study Scope and Objectives

The purpose of this study is to identify the potential impacts to traffic flow at the site access and on the surrounding roadway network. The study analysis includes the following tasks:

- Determine existing traffic volumes and circulation patterns;
- Estimate future traffic volumes if the proposed development was not constructed, including the impact of additional proposed developments in the area;
- Complete level-of-service [LOS] analysis of horizon year (without the proposed development) traffic conditions and identify operational deficiencies;
- Estimate the amount of traffic that would be generated by the proposed development and assign to the roadway network;
- Complete LOS analysis of horizon year (with the proposed development) traffic conditions and identify additional operational deficiencies;
- Complete a review of traffic operations at the proposed Street A access and study area intersections;
- Review the proposed configuration at the proposed Street A access and study area intersections;
- Review the available sight distance at the proposed Street A access; and
- Document findings and recommendations in a final report.

1.4 Horizon Year and Analysis Periods

Traffic scenarios for the existing year (2022) and horizon years (2027, 2032 \& 2037) were selected for analysis of traffic operations in the study area. The weekday morning [AM] and weekday afternoon [PM] peak hours have been selected as the analysis periods for this study.

2 Information Gathering

2.1 Street and Intersection Characteristics

Highway 115 is a four-lane Class 1B freeway provincial highway with a rural cross-section. Highway 115 has a posted speed limit of $100 \mathrm{~km} / \mathrm{h}$ and is under jurisdiction of the Ontario Ministry of Transportation [MTO]. The Highway 115 on and off ramps (for both northbound and southbound directions) have posted advisory speed of $40 \mathrm{~km} / \mathrm{h}$ and $70 \mathrm{~km} / \mathrm{h}$ respectively.

County Road 10 is a two-lane arterial road with a rural cross-section and no sidewalks. County Road 10 has a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$ and is under jurisdiction of the County.

Syer Line is a two-lane local road with a rural cross-section and no sidewalks. Syer Line has a discontinuation east and west of County Road 10 (approximately 506 metres). Syer Line west of County Road 10 has a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$ and east of County Road 10 has an unposted (assumed) speed limit of $50 \mathrm{~km} / \mathrm{h}$. Syer Line is under jurisdiction of the Township.

The existing intersection spacing and lane configuration within the study area is illustrated in Figure 2.

Figure 2 - Existing (2022) Intersection Spacing and Lane Configuration within Study Area

2.2 Local Transportation Infrastructure Improvements

Based on a review of the MTO's Highway's Programs interactive map, the County's Capital Works Project interactive map and the Township's Capital Budget (2022), there are no significant local road improvements scheduled in the study area that will impact traffic volumes or traffic patterns within the horizon years included in this analysis.

2.3 Transit Access

GO Transit provides the Route \#88 (Peterborough / Oshawa) bus route which provides connections between the City of Oshawa and the City of Peterborough along Highway 115.

The Peterborough / Oshawa bus route operates on weekdays between 04:45-21:45 with daytime service every two hour and on weekends between 05:40-21:45 with service every two hours.

The closest bus stop for the Peterborough / Oshawa bus route is located in the southeast corner of the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection (1.7 km from the Subject Site).

2.4 Other Developments within the Study Area

Based on discussions with County staff, the following developments are planned in the study area:

- Towerhill Development Phase 2;
- Vargas Development;
- Bromont Development;
- Millbrook Fire Hall;
- Syer West Development;
- Syer East Development; and
- CR10 Development.

The above noted developments are in various stages of development and are further described in the sections below. To be conservative in our analysis, we have assumed all of the developments will be built-out by the 2032 horizon year.

Figure 3 illustrates the location of these development relative to the study area.

Figure 3 - Adjacent Development Locations

ENGINEERING

2.4.1 Towerhill Developments Phase 2

Towerhill Developments Limited Is proposing to develop a 52.1 hectare parcel of land located northwest of the Fallis Line / County Road 10 intersection, south of the study area [Towerhill Developments Phase 2]. Towerhill Developments Phase 2 will consist of 328 single detached units, 245 townhouse units, 192 high-density residential units and an institutional block. JD Engineering completed a traffic impact study for Towerhill Developments Phase 2 (dated January 2021) [Towerhill TIS]. Towerhill Developments Phase 2 is pending site plan approval. It is anticipated Towerhill Developments Phase 2 will be fully built-out by 2023 .

The traffic assignment for the Towerhill Developments Phase 2 was determined in the Towerhill TIS, however, will be based on the Bromont TIS, which is further discussed in Section 2.4.3. The Bromont TIS used the Towerhill TIS to determine the future traffic volumes on County Road 10 and added further context to the traffic projections in the Towerhill TIS.

2.4.2 Vargas Development

Vargas Properties Inc. is proposing a mixed-use development located on the southeast corner of the Fallis Line / County Road 10 intersection, south of the study area [Vargas Development]. Vargas Development will consist of 116 single detached units, 58 townhouse units, 70 medium density units and a commercial block. Asurza Engineers Limited completed a traffic impact study for the Vargas Development (dated April 2021) [Vargas TIS]. Vargas Development is pending site plan approval. It is anticipated the Vargas Development will be 50% occupied by 2025 and fully built-out and occupied by 2030

The traffic assignment for the Vargas Development was determined in the Vargas TIS, however, will be based on the Bromont TIS, which is further discussed in Section 2.4.3. The Bromont TIS used the Vargas TIS to estimate the traffic assignment for the Vargas Development.

2.4.3 Bromont Development

Bromont Group is proposing a residential development located southwest of the Fallis Line / County Road 10 intersection, south of the study area [Bromont Development]. The Bromont Development will consist of 371 single detached units, 148 townhouse units and 150 mid-rise residential units. Asurza Engineers Limited completed a traffic impact study for the Bromont Development (dated January 2022) [Bromont TIS]. Bromont Development is pending site plan approval. It is anticipated the Bromont Development will be 50% occupied by 2025 and fully built-out and occupied by 2030

The traffic assignment for the Bromont Development was obtained from the Bromont TIS (excerpts provided in Appendix B). Figure 4 and 5 illustrates the traffic assignment for the Bromont Development for the 2027 and 2032 / 2037 horizon year, respectively. The distribution of this traffic within the study area has been estimated based on the 2016 Transportation Tomorrow Survey [TTS] data. The TTS data for the Township were retrieved using the TTS Internet Data Retrieval System [IDRS] (output attached as Appendix I). TTS data provides historical origin and destination work trip percentages for specific areas within the Town and southern Ontario.

Traffic distribution for the trips generated by the adjacent developments during the AM and PM peak hour is expected to generally follow commuter travel patterns. Our analysis is based on egress traffic during the AM peak hour. Logically, the distribution of ingress traffic will follow the inverse of the exiting traffic distribution. For each of the individual areas identified in the TTS data, we have selected the probable route of travel, assuming that people will select their route primarily based on travel time.

Table 1 illustrates the traffic distribution for the adjacent developments noted above, using the methodology outlined above.

Table 1 - Adjacent Development Traffic Distribution (Residential)

Travel Direction (to/from)	Percent of Total Traffic Generation
West via Highway 115*	17%
East via Highway 115	48%
South via County Road 10**	16%
North via County Road 10	2%
Total	$\mathbf{1 0 0 \%}$

*Although traffic will be travelling west onto Highway 115, a large percentage will access the highway external from the study area and only a small portion will access Highway 115 via the interchange in the study area.
** Is outside of the study area.
The Bromont TIS accounted for the traffic assignment for the Towerhill Developments Phase 2 and the Vargas Development which were obtained in each respective report. For the purposes of our study, we have determined the traffic assignment for the Towerhill Developments Phase 2 and the Vargas Development and other minor development in the Millbrook community based on the Bromont TIS (excerpts provided in Appendix B).

Figure 6 and 7 illustrates the traffic assignment for the adjacent developments noted in the Bromont TIS 1 for the 2027 and 2032 / 2037 horizon year respectively, in the AM and PM peak hours. The traffic distribution in the study area has been assumed based on Table 9 and the assumptions noted above.

2.4.4 Millbrook Fire Hall

The Township is proposing to construct a fire hall on a site municipally known as 988 County Road 10, located north of the Municipal Office [Millbrook Fire Hall]. The Millbrook Fire Hall will be occupied by two user groups: the Township's Fire and Emergency Service and the County's Paramedic Service. JD Engineering completed a traffic impact study for the Millbrook Fire Hall (dated October 2021) [Millbrook Fire Hall TIS]. The Millbrook Fire Hall is site plan approved and is assumed to be built-out by 2027.

The traffic assignment for the Millbrook Fire Hall was obtained from the Millbrook Fire Hall TIS (excerpts provided in Appendix B). Figure 8 illustrates the traffic assignment for the Millbrook Fire Hall, for the AM and PM peak hour. The traffic distribution in the study area is based on the existing traffic in the study area, as illustrated in Table 2.

Table 2 - Adjacent Development Traffic Distribution (Existing Traffic)

Scenario	Direction	Ingress / Egress Traffic Direction			
		West	East	South* *	North
AM	In	6%	16%	51%	27%
	Out	16%	23%	30%	31%
PM	In	18%	24%	30%	28%
	Out	9%	13%	45%	33%

*Outside of the study area.

[^0]
2.4.5 Syer West Development, Syer East Development \& CR10 Development

There are a number of future rural employment zoned lands in the study area as illustrated in Figure 3 which have been reviewed as part of this study.

For the purpose of our analysis, it is assumed development will occur within the parcel located at the northwest corner of the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection [Syer West Development]. We have assumed the Syer West Development will have 20 employees and include access driveways onto County Road 10 north of the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection. We have assumed the Syer West Development will be built-out by 2032.

It is assumed development will occur within the parcel located east of the Highway 115 / County Road 10 interchange, west of the proposed development [Syer East Development]. We have assumed the Syer East Development will have 20 employees and include an access driveway onto Syer Line, west of Street A. We have assumed the Syer East Development will be built-out by 2037.

It is assumed development will occur within the parcel located at the northeast corner of the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection [CR10 Development]. We have assumed the CR10 Development will have 40 employees and include access driveways onto County Road 10 north of the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection. We have assumed the CR10 Development will be built-out by 2037 .

The traffic generation for the Syer West Development, Syer East Development \& CR10 Development was assumed based Institute of Transportation Engineers [ITE] Trip Generation Manual (114 Edition), which used the following land use:

- ITE land use 110 (General Light Industrial) - General Urban/Suburban Setting

The traffic generated by the Syer West Development, Syer East Development \& CR10 Development is illustrated in Table 3.

Table 3 - Estimated Traffic Generation for Syer West, Syer East \& CR10 Development

Development	Land Use	Size	AM Peak Hour			PM Peak Hour		
			IN	OUT	TOTAL	IN	OUT	TOTAL
Syer West Development	General Light Industrial ITE Land Use: 110	$\begin{gathered} 20 \\ \text { employees } \end{gathered}$	9	2	11	2	8	10
Syer East Development		$\begin{gathered} 20 \\ \text { employees } \end{gathered}$	9	2	11	2	8	10
CR10 Development		$\begin{gathered} 40 \\ \text { employees } \\ \hline \end{gathered}$	18	4	22	4	16	20

The traffic distribution for the Syer West Development, Syer East Development \& CR10 Development is based on the traffic distribution for the proposed development as noted in Table 13 in Section 4.2.

Figure 9, 10 and 11 illustrates the traffic assignment for the Syer West Development, Syer East Development \& CR10 Development, in the AM and PM peak hours.

Figures 12, 13 and 14 illustrates total traffic assignment for the 2027, 2032 and 2037 horizon years respectively, for the adjacent developments in the study area during the AM and PM peak hour.

Figure 4 - Adjacent Development - Bromont Development Traffic Volumes (2027)

Figure 5 - Adjacent Development - Bromont Development Traffic Volumes (2032 / 2037)

Figure 6 - Adjacent Development (Bromont TIS²) Traffic Volumes (2027)

[^1]Figure 7 - Adjacent Development (Bromont TIS²) Traffic Volumes (2032 / 2037)

Figure 8 - Adjacent Development - Millbrook Fire Hall Traffic Volumes (2027)

Figure 9 - Adjacent Development - Syer West Development Traffic Volumes (2032)

Figure 10 - Adjacent Development - Syer East Development Traffic Volumes (2037)

Figure 11 - Adjacent Development - CR10 Development Traffic Volumes (2037)

Figure 12 - Total Net Adjacent Development Traffic Volumes (2027)

Figure 13 - Total Net Adjacent Development Traffic Volumes (2032)

Figure 14 - Total Net Adjacent Development Traffic Volumes (2037)

2.5 Background Traffic Growth

A background traffic growth rate on Highway 115 was calculated based on the MTO's Traffic Volumes Program between 2006 - 2016. A background traffic growth rate of 2.3% was applied on Highway 115. Based on correspondence with the County a general background traffic growth rate of 2% was applied on County Road 10. A general background traffic growth rate of 2% was assumed for Syer Line.

2.6 Traffic Counts

Detailed turning movement traffic and pedestrian counts were obtained from the MTO at the following intersections: Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10. Detailed turning movement traffic and pedestrian counts were obtained from past studies at the Larmer Line / County Road 10 intersection.

Table 4 summarizes the traffic count data collection information.
Table 4 - Traffic Count Data

Intersection (E-w Street / N-S Street)	Count Date	AM Peak Hour	PM Peak Hour	Source
Highway 115 SB Ramp \& Syer Line / County Road 10	Tuesday, October $30^{\text {th }}, 2018$	$07: 15-08: 15$	$16: 30-17: 30$	MTO
Highway 115 NB Ramp \& Syer Line / County Road 10	Tuesday, October $30^{\text {th }}, 2018$	$07: 30-08: 30$	$16: 15-17: 15$	MTO
Larmer Line / County Road 10	Tuesday, April $25^{\text {th }}, 2017$	$07: 30-08: 30$	$16: 30-17: 30$	JD Eng.*

* The traffic counts were completed by Ontario Traffic Inc. on behalf of JD Engineering for the Towerhill TIS.

Detailed traffic count data can be found in Appendix C. The peak hours of traffic generation for the study area intersections generally aligned with the anticipated peak hour of traffic generation by the proposed development. Although the AM and PM peak periods at all study area intersections did not exactly align, for the purpose of this report, we have assumed that the AM and PM peak hours are concurrent.

Heavy vehicle percentages from the traffic count data have also been included in the Synchro analysis.
The baseline 2021 traffic volume for County Road 10 at Larmer Line in the Bromont TIS and Towerhill TIS was higher than the adjusted 2021 traffic volumes on County Road 10, based on the 2018 traffic count data from MTO. In order to be conservative, our baseline 2021 traffic volume projections for County Road 10 incorporates the methodology applied in the Bromont TIS and Towerhill TIS (excerpts provided in Appendix B).

To determine the equivalent existing (2022) traffic volume, the background traffic growth rates noted in Section 2.5 were applied. The through traffic on County Road 10 in the study area was adjusted to match the north leg of traffic from the Larmer Line / County Road 10 intersection. The side street traffic at the County Road 10 study area intersection were based on the 2018 traffic count data from the MTO.

Figure 15 illustrates the existing (2022) AM and PM peak hour traffic volumes within the study area.

2.7 Horizon Year Traffic Volumes

The background (2027, 2032 and 2037) traffic volumes were estimated using the existing (2022) AM and PM peak hour traffic volumes and applying the background traffic growth rate discussed in Section 2.5 and the adjacent development traffic identified in Section 2.4.

The proposed Street A access has been assumed to be located directly across from the existing driveway on Syer Line, which provides access to one single detached unit. The traffic generation for the single detached unit has been based on the ITE Trip Generation Manual. The following ITE land use has been applied to estimate the traffic generated by the single detached unit:

- ITE land use 210 (Single-Family Detached Housing) - General Urban/Suburban Setting

Figures 16, 17 and 18 for the background (2027, 2032 and 2037) respectively, in the AM and PM peak hour traffic volumes for the study area (excluding the proposed development traffic volumes).

Figure 15 - Existing (2022) Traffic Volumes

Figure 16 - Background (2027) Traffic Volumes

Figure 17 - Background (2032) Traffic Volumes

Figure 18 - Background (2037) Traffic Volumes

3 Intersection
 Operation Development
 without
 Proposed

3.1 Introduction

Intersection performance was measured using the traffic analysis software, Synchro 11, a deterministic model that employs Highway Capacity Manual and Intersection Capacity Utilization methodologies for analysing intersection operations. These procedures are accepted by provincial and municipal agencies throughout North America.

Synchro 11 enables the study area to be graphically defined in terms of streets and intersections, along with their geometric and traffic control characteristics. The user is able to evaluate both signalized and unsignalized intersections in relation to each other, thus not only providing level of service for the individual intersections, but also enabling an assessment of the impact the various intersections in a network have on each other in terms of spacing, traffic congestion, delay, and queuing.

Individual turning movements with a volume-to-capacity [V/C] ratio of 0.85 or greater are considered to be critical movements and have been highlighted in the LOS tables.

The intersection operations were also evaluated in terms of the LOS. LOS is a common measure of the quality of performance at an intersection and is defined in terms of vehicular delay. This delay includes deceleration delay, queue move-up time, stopped delay, and acceleration delay. LOS is expressed on a scale of A through F, where LOS A represents very little delay (i.e. less than 10 seconds per vehicle) and LOS F represents very high delay (i.e. greater than 50 seconds per vehicle for a stop sign controlled intersection and greater than 80 seconds per vehicle for a signalized intersection).

The LOS criteria for signalized and stop sign controlled intersections are shown in Table 5. A description of traffic performance characteristics is included for each LOS.

Table 5 - Level of Service Criteria for Intersections

LOS	LOS Description	Control Delay (seconds per vehicle)	
		Signalized Intersections	Stop Controlled Intersections
A	Very low delay; most vehicles do not stop (Excellent)	less than 10.0	less than 10.0
B	Higher delay; more vehicles stop (Very Good)	between 10.0 and 20.0	between 10.0 and 15.0
C	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	between 20.0 and 35.0	between 15.0 and 25.0
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	between 35.0 and 55.0	between 25.0 and 35.0
E	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	between 55.0 and 80.0	between 35.0 and 50.0
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	greater than 80.0	greater than 50.0

3.2 Existing (2022) Intersection Operation

The results of the LOS analysis under existing (2022) traffic volumes during the AM and PM peak hour can be found below in Table 6. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in Appendix D.

Table 6 - Existing (2022) LOS

Location (E-W Street / N-S Street)	Weekday AM Peak Hour					Weekday PM Peak Hour				
	V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue		V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue	
				Model	Storage				Model	Storage
Highway 115 SB Ramp \& Syer Line / County Road 10 (unsignalized)	-	5.9	A	-	-	-	9.3	A	-	-
EB	0.06	11.0	B	2	-	0.11	13.0	B	3	-
WB	0.37	20.8	C	14	-	0.61	30.2	D	31	-
NB	0.01	0.4	A	1	-	0.01	0.6	A	1	-
SBL	0.08	8.1	A	2	82	0.04	8.0	A	2	82
SBTR	0.08	0.0	A	0	-	0.12	0.0	A	0	-
Highway 115 NB Ramp \& Syer Line / County Road 10 (unsignalized)	-	4.0	A	-	-	-	6.1	B	-	-
EB	0.18	20.3	C	6	-	0.49	25.6	D	21	-
WB	0.08	16.7	C	2	-	0.04	13.6	B	1	-
NBL	0.14	8.2	A	4	85	0.07	8.3	A	2	85
NBTR	0.15	0.0	A	0	-	0.11	0.0	A	0	-
SB	0.01	0.5	A	1	-	0.01	0.2	A	1	-

The results of the LOS analysis indicate that all intersections are operating within the typical design limits noted in Section 3.1.

There are no issues regarding the anticipated queue for all movements in the study area.
An analysis was completed for left turn movements at the unsignalized intersections in the study area, based on the criteria outlined in Appendix 9A of the Ontario Ministry of Transportation Design Supplement for TAC Geometric Design Guide for Canadian Roads June 2017 [MTO DS]. Based off the above noted criteria, a left-turn lane is warranted in the southbound direction at the Highway 115 NB Ramp \& Syer Line / County Road 10 intersection (results provided in Appendix G); however, no improvements are recommended as left-turn movements are low (under 2.5\%) and the eastbound left turn movements would only block through movements for approximately 2% of the time during the critical PM peak hour.

A review of the need for an auxiliary right turn lane at the unsignalized intersections in the study area was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, auxiliary right turn lanes are not recommended.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at unsignalized intersections in the study area (results are provided in Appendix H).

No improvements are recommended within the study area for the existing horizon year.

3.3 Background (2027) Intersection Operation

The results of the LOS analysis under background (2027) traffic volumes during the AM and PM peak hour can be found below in Table 7. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in Appendix E.

Table 7 - Background (2027) LOS

Location (E-W Street / N-S Street)	Weekday AM Peak Hour					Weekday PM Peak Hour				
	V/C	Delay (s)	LOS	95thQueuentile		V/C	Delay (s)	LOS	95 ${ }^{\text {th }}$ Percentile	
				Model	Storage				Model	Storage
Highway 115 SB Ramp \& Syer Line / County Road 10 (unsignalized)	-	83.4	B	-	-	-	289.3	D	-	-
EB	0.08	11.8	B	2	-	0.14	14.6	B	4	-
WB	1.37	223.4	F	166	-	2.28	613.2	F	405	-
NB	0.01	0.4	A	1	-	0.02	0.6	A	1	-
SBL	0.09	8.3	A	3	82	0.05	8.1	A	2	82
SBTR	0.09	0.0	A	0	-	0.14	0.0	A	0	-
Highway 115 NB Ramp \& Syer Line / County Road 10 (unsignalized)	-	65.3	C	-	-	-	1173.8	F	-	-
EB	2.97	1238.9	F	70	-	5.58	Error	F	Error	-
WB	0.98	361.9	F	26	-	0.35	110.5	F	111	-
NBL	0.62	14.1	B	36	85	0.51	14.3	B	15	85
NBTR	0.19	0.0	A	0	-	0.14	0.0	A	0	-
SB	0.01	0.4	A	1	-	0.01	0.2	A	1	-

The LOS analysis indicates that the Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10 intersections are operating outside the typical design limits as noted in Section 3.1. Based on the Ontario Traffic Manual Book 12 Signal Justification, underground traffic signal provisions is warranted at the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection and is not warranted at the Highway 115 NB Ramp \& Syer Line / County Road 10 intersection (results are provided in Appendix H). Based on the anticipated control delay for the Syer Line approaches, it is recommended both intersections are signalized. It is noted that signalization will be warranted based on the future developments in the Millbrook community; it is recommended the MTO review the traffic at both intersections closer to the 2027 horizon year as the development in the Millbrook community progresses, to determine the exact timing of the signalization.

To accommodate the above noted signalization, it is recommended the signal heads accommodate a northbound protected + permissive left turn phase at the Highway 115 NB Ramp \& Syer Line / County Road 10 intersection

The results of the LOS analysis under background (2027) traffic volumes with the above noted improvements during the AM and PM peak hour can be found below in Table 8. Detailed output of the Synchro analysis can be found in Appendix E.

Table 8 - Background (2027) LOS with Improvements

Location (E-W Street / N-S Street)	Weekday AM Peak Hour					Weekday PM Peak Hour				
	V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue		V/C	Delay (s)	LOS	95 ${ }^{\text {th }}$ Percentile Queue	
				Model	Storage				Model	Storage
Highway 115 SB Ramp \& Syer Line / County Road 10 (signalized)	0.63	27.4	C	-	-	0.85	38.8	D	-	-
EB	0.04	12.1	B	6	-	0.07	8.2	A	8	-
WB	0.61	22.3	C	84	-	0.85	29.1	C	213	-
NB	0.65	34.6	C	92	-	0.83	57.8	E	136	-
SBL	0.42	31.0	C	33	82	0.43	45.2	D	29	82
SBTR	0.26	25.5	C	39	-	0.55	42.5	D	80	-
Highway 115 NB Ramp \& Syer Line / County Road 10 (signalized)	0.81	18.2	B	-	-	0.89	32.9	C	-	-
EB	0.23	42.2	D	15	-	0.81	63.1	E	71	-
WB	0.14	41.3	D	11	-	0.04	37.9	D	9	-
NBL	0.85	17.7	B	86	85	0.89	30.7	C	80	85
NBTR	0.26	3.0	A	23	-	0.20	5.8	A	31	-
SB	0.69	23.4	C	116	-	0.90	34.0	C	297	-

The results of the LOS analysis indicate that the Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10 intersections are operating marginally outside the typical design limits as noted in Section 3.1. Since the delay is under LOS F and the anticipated queuing is not anticipated to cause any notable issues as noted below, no further improvements are recommended.

The anticipated queuing for northbound left turn movements is anticipated to extend past the existing storage length; however, the excess queue can be accommodated by the existing taper length.

There are no issues regarding the anticipated queue for all other movements in the study area.
No further infrastructure improvements are recommended for the background (2027) scenario within the study area.

3.4 Background (2032) Intersection Operation

The results of the LOS analysis under background (2032) traffic volumes during the AM and PM peak hour can be found below in Table 9. The recommended improvements identified in Section 3.3 have been utilized in this scenario. Detailed output of the Synchro analysis can be found in Appendix E.

Table 9 - Background (2032) LOS

Location (E-W Street / N-S Street)	Weekday AM Peak Hour					Weekday PM Peak Hour				
	V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue		V/C	Delay (s)	LOS	95 $5^{\text {th }}$ PercentileQueue	
				Model	Storage				Model	Storage
Highway 115 SB Ramp \& Syer Line / County Road 10 (signalized)	0.69	29.8	C	-	-	0.96	51.2	D	-	-
EB	0.04	12.2	B	7	-	0.07	8.2	A	9	-
WB	0.68	24.7	C	97	-	0.97	45.9	D	259	-
NB	0.72	37.6	D	105	-	0.93	72.2	E	160	-
SBL	0.51	34.9	C	38	82	0.56	54.1	D	37	82
SBTR	0.30	26.0	C	43	-	0.62	44.8	D	91	-
Highway 115 NB Ramp \& Syer Line / County Road 10 (signalized)	0.95	30.5	C	-	-	1.04	58.5	E	-	-
EB	0.32	43.2	D	18	-	0.85	67.0	E	87	-
WB	0.16	41.3	D	12	-	0.04	37.3	D	9	-
NBL	0.99	45.3	D	105	85	1.07	79.9	E	111	85
NBTR	0.28	3.2	A	27	-	0.22	6.6	A	34	-
SB	0.76	26.5	C	137	-	1.03	61.1	E	354	-

The results of the LOS analysis indicate that the Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10 intersections are operating outside the typical design limits as noted in Section 3.1. It is noted the southbound traffic is beyond the typical planning capacity for a single lane arterial roadway (850 vph) in the southbound direction in the PM peak hour.

Due to the long-term estimates (10 years) and the increase in traffic in the study area being dependent on the adjacent development in the Milbrook community as noted in Section 2.4, it is recommended the MTO and County monitor the queuing on County Road 10 and on the Highway 115 ramps as the future Millbrook developments become fully built-out and occupied, to determine if infrastructure improvements are warranted. For the purposes of this report, the following improvements should be considered to improve the capacity issues at both intersections:

- Highway 115 SB Ramp \& Syer Line / County Road 10
- Widen the SB Off-Ramp for the construction of a westbound left turn lane with 150 metre storage length, 40 parallel length and 100 metre taper length and
- Provide a protected + permissive westbound left turn phase.
- Highway 115 NB Ramp \& Syer Line / County Road 10
- Widen the County Road 10, north of the Highway 115 NB Ramp to provide two southbound lanes. The southbound configuration at the intersection should include a through / left lane and a through / right lane.

The results of the LOS analysis under background (2032) traffic volumes with the above noted improvements during the AM and PM peak hour can be found below in Table 10. Detailed output of the Synchro analysis can be found in Appendix E.

Table 10 - Background (2032) LOS with Improvements

Location (E-W Street / N-S Street)	Weekday AM Peak Hour					Weekday PM Peak Hour				
	V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue		V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue	
				Model	Storage				Model	Storage
Highway 115 SB Ramp \& Syer Line / County Road 10 (signalized)	0.64	28.4	C	-	-	0.83	33.7	C	-	-
EB	0.04	15.4	B	8	-	0.10	31.2	C	18	-
WBL	0.65	27.7	C	98	190	0.84	26.5	C	156	190
WBTR	0.04	15.8	B	8	-	0.04	10.9	B	8	-
NB	0.64	33.2	C	105	-	0.76	46.6	D	130	-
SBL	0.43	29.8	C	37	82	0.38	36.9	D	30	82
SBTR	0.26	24.3	C	43	-	0.52	36.5	D	83	-
Highway 115 NB Ramp \& Syer Line / County Road 10 (signalized)	0.79	21.2	C	-	-	0.84	32.9	C	-	-
EB	0.32	43.2	D	18	-	0.84	64.6	E	86	-
WB	0.16	41.3	D	12	-	0.04	37.0	D	9	-
NBL	0.81	17.7	B	123	85	0.81	32.9	C	103	85
NBTR	0.28	3.2	A	27	-	0.22	6.7	A	35	-
SB	0.65	32.1	C	72	-	0.76	32.5	C	168	-

The results of the LOS analysis indicate that all intersections are operating within the typical design limits noted in Section 3.1.

The anticipated queue for westbound left turn movements at the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection and northbound left turn movements at the Highway 115 NB Ramp \& Syer Line / County Road 10 intersection extend past the existing / proposed storage length; however, the excess queue can be accommodated by the taper length and will clear by the end of each phase.

There are no issues regarding the anticipated queue for all other movements in the study area.
No further infrastructure improvements are recommended for the background (2032) scenario within the study area.

3.5 Background (2037) Intersection Operation

The results of the LOS analysis under background (2037) traffic volumes during the AM and PM peak hour can be found below in Table 11. The recommended improvements identified in Section 3.3 and 3.4 have been utilized in this scenario. Detailed output of the Synchro analysis can be found in Appendix E.

Table 11 - Background (2037) LOS

Location (E-W Street / N-S Street)	Weekday AM Peak Hour					Weekday PM Peak Hour				
	V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue		V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue	
				Model	Storage				Model	Storage
Highway 115 SB Ramp \& Syer Line / County Road 10 (signalized)	0.70	30.4	C	-	-	0.88	38.2	D	-	-
EB	0.05	15.4	B	8	-	0.12	31.7	C	19	-
WBL	0.69	29.4	C	106	190	0.88	30.6	C	176	190
WBTR	0.05	15.9	B	9	-	0.05	10.9	B	9	-
NB	0.72	36.3	D	120	-	0.85	53.6	D	160	-
SBL	0.52	33.6	C	43	82	0.48	41.5	D	35	82
SBTR	0.30	24.8	C	48	-	0.59	38.5	D	96	-
Highway 115 NB Ramp \& Syer Line / County Road 10 (signalized)	0.87	25.5	C	-	-	0.89	39.6	D	-	-
EB	0.59	49.5	D	27	-	0.89	72.5	E	101	-
WB	0.15	40.7	D	12	-	0.06	36.6	D	12	-
NBL	0.88	25.1	C	172	85	0.87	43.6	D	117	85
NBTR	0.32	3.7	A	36	-	0.25	7.4	A	38	-
SB	0.72	35.1	D	83	-	0.85	38.8	D	187	-

The results of the LOS analysis indicate that the Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10 intersections are operating marginally outside the typical design limits as noted in Section 3.1. Since the delay is under LOS F and the anticipated queuing is not anticipated to cause any notable issues as noted below, no further improvements are recommended.

The anticipated queue for westbound left turn movements at the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection and northbound left turn movements at the Highway 115 NB Ramp \& Syer Line / County Road 10 intersection extend past the existing / proposed storage length; however, the excess queue can be accommodated by the taper length and will clear by the end of each phase.

There are no issues regarding the anticipated queue for all other movements in the study area.
No additional infrastructure improvements are recommended for the background (2037) scenario within the study area.

4 Proposed Development Traffic Generation and Assignment

4.1 Traffic Generation

The traffic generation for the Subject Site has been based on the ITE Trip Generation Manual. The following ITE land use has been applied to estimate the traffic from the proposed development:

- ITE land use 110 (General Light Industrial) - General Urban/Suburban Setting

The estimated trip generation of the proposed development is illustrated below in Table 12. The AM and PM peak traffic generation for the proposed development does not exactly align with the AM and PM peak hour in the traffic counts; consequently, we have applied the peak hour of adjacent street traffic values provided in the ITE Trip Generation Manual.

Table 12 - Estimated Traffic Generation of Proposed Development

Land Use	Size	AM Peak Hour			PM Peak Hour		
		IN	OUT	TOTAL	IN	OUT	TOTAL
General Light Industrial ITE Land Use: 110	161 employees*	73	15	88	18	62	80

* An employment density of 5 jobs per hectare was assumed based on the land use of the Subject Site. Based on this assumption, the Subject Site lot (32.02 hectares) is estimated to employ 161 employees.

No transportation modal split has been applied to the above-noted traffic generation calculation in order to be conservative.

4.2 Traffic Assignment

For the purposes of this study, it has been assumed that all traffic generated by the proposed development will be new traffic and would not be in the study area if the development was not constructed.

The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour.

The distribution of traffic for autombile trips has been calculated based on the 2016 TTS data for the Township retrieved using the TTS IDRS (output attached as Appendix I). TTS data provides historical origin and destination work trip percentages for specific areas within the Town and southern Ontario.

Traffic distribution for the trips generated by the proposed development during the AM and PM peak hour is expected to generally follow commuter travel patterns. Our analysis is based on ingress traffic during the AM peak hour. Logically, the distribution of ingress traffic will follow the inverse of the exiting traffic distribution. For each of the individual areas identified in the TTS data, we have selected the probable route of travel, assuming that people will select their route primarily based on travel time.

Table 13 illustrates the traffic distribution for the automobile trips in the proposed development, using the methodology outlined above.

Table 13 - Proposed Development Traffic Distribution

Travel Direction (to/from)	Percent of Total Traffic Generation
West via Highway 115	10%
East via Highway 115	52%
South via County Road 10	12%
North via County Road 10	$\mathbf{2 6 \%}$
Total	$\mathbf{1 0 0 \%}$

Using the traffic distribution patterns noted above, the traffic assignment for the proposed development was calculated for the AM and PM peak hour and is illustrated in Figures 19.

4.3 Total Horizon Year Traffic Volumes with the Proposed Development

For the total $(2027,2032$ and 2037) horizon year traffic volumes, the proposed development traffic was added to the background (2027, 2032 and 2037) traffic volumes. The resulting total (2027, 2032 and 2037) horizon year traffic volumes for the AM and PM peak hour are illustrated in Figures 20, 21 and 22 respectively.

Figure 19 - Proposed Development Traffic Assignment

Figure 20 - Total (2027) Traffic Volumes

Figure 21 - Total (2032) Traffic Volumes

Figure 22 - Total (2037) Traffic Volumes

5 Intersection

Operation
with
Proposed

5.1 Total (2027) Intersection Operation

The results of the LOS analysis under total (2027) traffic volumes during the AM and PM peak hour can be found below in Table 14. The recommended improvements identified in Section 3.3 have been utilized in this scenario. Detailed output of the Synchro analysis can be found in Appendix F.

Table 14 - Total (2027) LOS

Location (E-W Street / N-S Street)	Weekday AM Peak Hour					Weekday PM Peak Hour				
	V/C	Delay (s)	LOS	95 ${ }^{\text {th }}$ Percentile Queue		V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue	
				Model	Storage				Model	Storage
Highway 115 SB Ramp \& Syer Line / County Road 10 (signalized)	0.69	29.8	C	-	-	0.87	41.7	D	-	-
EB	0.04	12.2	B	7	-	0.07	8.2	A	8	-
WB	0.68	24.7	C	97	-	0.87	30.4	C	219	-
NB	0.72	37.6	D	105	-	0.89	64.6	E	151	-
SBL	0.51	34.9	C	38	82	0.47	47.7	D	30	82
SBTR	0.30	26.0	C	43	-	0.56	42.8	D	82	-
Highway 115 NB Ramp \& Syer Line / County Road 10 (signalized)	0.95	30.4	C	-	-	0.91	35.6	D	-	-
EB	0.32	43.2	D	18	-	0.84	68.0	E	77	-
WB	0.16	41.3	D	12	-	0.22	39.5	D	27	-
NBL	0.99	45.3	D	105	85	0.90	32.0	C	81	85
NBTR	0.28	3.2	A	27	-	0.20	5.9	A	31	-
SB	0.76	26.5	C	137	-	0.92	37.2	D	306	-
Syer Line / Street A (unsignalized)	-	0.2	A	-	-	-	5.3	A	-	-
NB	0.00	8.8	A	0	-	0.00	9.8	A	0	-
SB	0.00	0.0	A	0	-	0.06	8.6	A	2	-

The results of the LOS analysis indicate that the Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10 intersections are operating marginally outside the typical design limits as noted in Section 3.1. Since the delay is under LOS F and the anticipated queuing is not anticipated to cause any notable issues as noted below, no further improvements are recommended.

The anticipated queuing for northbound left turn movements is anticipated to extend past the existing storage length; however, the excess queue can be accommodated by the existing taper length.

There are no issues regarding the anticipated queue for all other movements in the study area.
An analysis was completed for left turn movements at the Syer Line / Street A intersection, based on the criteria outlined in Appendix 9A of the MTO DS (results are provided in Appendix G). Based on the above noted criteria additional auxiliary left-turn lane is not warranted at the Syer Line / Street A intersection.

A review of the need for an auxiliary right turn lane at the Syer Line / Street A intersection was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, auxiliary right turn lanes are not recommended.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at Syer Line / Street A intersection (results are provided in Appendix H).

No further infrastructure improvements are recommended for the total (2027) scenario within the study area.

5.2 Total (2032) Intersection Operation

The results of the LOS analysis under total (2032) traffic volumes during the AM and PM peak hour can be found below in Table 15. The recommended improvements identified in Section 3.3 and 3.4 have been utilized in this scenario. Detailed output of the Synchro analysis can be found in Appendix F.

Table 15 - Total (2032) LOS

Location (E-W Street / N-S Street)	Weekday AM Peak Hour					Weekday PM Peak Hour				
	V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue		V/C	Delay (s)	LOS	95 ${ }^{\text {th }}$ Percentile Queue	
				Model	Storage				Model	Storage
Highway 115 SB Ramp \& Syer Line / County Road 10 (signalized)	0.69	29.7	C	-	-	0.85	35.3	D	-	-
EB	0.04	15.4	B	8	-	0.11	31.3	C	18	-
WBL	0.72	30.8	C	114	190	0.85	27.3	C	160	190
WBTR	0.04	15.8	B	8	-	0.04	10.9	B	8	-
NB	0.65	33.6	C	107	-	0.81	49.9	D	148	-
SBL	0.43	30.0	C	37	82	0.40	38.0	D	30	82
SBTR	0.30	24.8	C	48	-	0.53	36.7	D	85	-
Highway 115 NB Ramp \& Syer Line / County Road 10 (signalized)	0.84	27.1	C	-	-	0.85	35.0	C	-	-
EB	0.57	48.4	D	26	-	0.85	66.3	E	90	-
WB	0.22	41.4	D	16	-	0.20	38.2	D	27	-
NBL	0.85	22.7	C	160	85	0.83	35.5	D	105	85
NBTR	0.30	3.5	A	32	-	0.23	7.0	A	35	-
SB	0.83	40.8	D	95	-	0.79	34.6	C	174	-
Syer Line / Street A (unsignalized)	-	5.0	A	-	-	-	5.1	A	-	-
NB	0.00	10.2	B	0	-	0.00	9.8	A	0	-
SB	0.02	8.5	A	1	-	0.06	8.6	A	2	-

The results of the LOS analysis indicate that the Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10 intersections are operating marginally outside the typical design limits as noted in Section 3.1. Since the delay is under LOS F and the anticipated queuing is not anticipated to cause any notable issues as noted below, no further improvements are recommended.

The anticipated queue for westbound left turn movements at the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection and northbound left turn movements at the Highway 115 NB Ramp \& Syer Line / County Road 10 intersection extend past the existing / proposed storage length; however, the excess queue can be accommodated by the taper length and will clear by the end of each phase.

There are no issues regarding the anticipated queue for all other movements in the study area.
An analysis was completed for left turn movements at the Syer Line / Street A intersection, based on the criteria outlined in Appendix 9A of the MTO DS (results are provided in Appendix G). Based on the above noted criteria additional auxiliary left-turn lane is not warranted at the Syer Line / Street A intersection.

A review of the need for an auxiliary right turn lane at the Syer Line / Street A intersection was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, auxiliary right turn lanes are not recommended.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at Syer Line / Street A intersection (results are provided in Appendix H).

No further infrastructure improvements are recommended for the total (2032) scenario within the study area.

5.3 Total (2037) Intersection Operation

The results of the LOS analysis under total (2037) traffic volumes during the AM and PM peak hour can be found below in Table 16. The recommended improvements identified in Section 3.3 and 3.4 have been utilized in this scenario. Detailed output of the Synchro analysis can be found in Appendix F.

Table 16 - Total (2037) LOS

$\begin{gathered} \text { Location } \\ \text { (E-W Street / N-S Street) } \end{gathered}$	Weekday AM Peak Hour					Weekday PM Peak Hour				
	V/C	Delay (s)	LOS	$95^{\text {th }}$ PercentileQueue		V/C	Delay (s)	LOS	$95^{\text {th }}$ Percentile Queue	
				Model	Storage				Model	Storage
Highway 115 SB Ramp \& Syer Line / County Road 10 (unsignalized)	0.74	31.9	C	-	-	0.91	40.6	D	-	-
EB	0.05	15.4	B	8	-	0.12	31.9	C	19	-
WBL	0.76	33.2	C	124	190	0.89	32.0	C	186	190
WBTR	0.05	15.9	B	9	-	0.05	10.9	B	9	-
NB	0.73	36.9	D	122	-	0.89	59.1	E	173	-
SBL	0.53	33.9	C	43	82	0.51	43.5	D	36	82
SBTR	0.33	25.3	C	53	-	0.60	38.8	D	98	-
Highway 115 NB Ramp \& Syer Line / County Road 10 (unsignalized)	0.90	33.2	C	-	-	0.91	42.9	D	-	-
EB	0.63	52.3	D	30	-	0.92	78.8	E	107	-
WB	0.22	41.1	D	16	-	0.22	37.9	D	30	-
NBL	0.91	31.1	C	186	85	0.88	46.5	D	120	85
NBTR	0.33	3.9	A	39	-	0.25	7.8	A	38	-
SB	0.91	48.7	D	110	-	0.89	42.6	C	192	-
Syer Line / Street A (unsignalized)	-	4.9	A	-	-	-	5.0	A	-	-
NB	0.00	10.2	B	0	-	0.00	9.9	A	0	-
SB	0.02	8.5	A	1	-	0.06	8.6	A	2	-

The results of the LOS analysis indicate that the Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10 intersections are operating marginally outside the typical design limits as noted in Section 3.1. Since the delay is under LOS F and the
anticipated queuing is not anticipated to cause any notable issues as noted below, no further improvements are recommended.

The anticipated queue for westbound left turn movements at the Highway 115 SB Ramp \& Syer Line / County Road 10 intersection and northbound left turn movements at the Highway 115 NB Ramp \& Syer Line / County Road 10 intersection extend past the existing / proposed storage length; however, the excess queue can be accommodated by the taper length and will clear by the end of each phase.

There are no issues regarding the anticipated queue for all other movements in the study area.
An analysis was completed for left turn movements at the Syer Line / Street A intersection, based on the criteria outlined in Appendix 9A of the MTO DS (results are provided in Appendix G). Based on the above noted criteria additional auxiliary left-turn lane is not warranted at the Syer Line / Street A intersection.

A review of the need for an auxiliary right turn lane at the Syer Line / Street A intersection was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, auxiliary right turn lanes are not recommended.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at Syer Line / Street A intersection (results are provided in Appendix H).

No further infrastructure improvements are recommended for the total (2037) scenario within the study area.

5.4 Site Access

Street A will operate efficiently as a full-movement access, with one-way stop control for southbound movements. No lane improvements are recommended on Syer Line at Street A. A single ingress and egress lane at Street A will provide the necessary capacity to service the proposed development.

The proposed spacing between Street A and County Road $10(1.11 \mathrm{~km})$ and Street A and Hutchinson Drive (2.67 km) is greater than the desired spacing between adjacent intersections on a local road (40 metres) identified in Section 9.4.2.1 of the TAC Guidelines.

5.5 Sight Distance Review

A review of the available sight distance for the Street A access was completed as part of this analysis.
The sight distance east and west of Street A (greater than 200 metres) is greater than the minimum stopping and intersection sight distance requirements as per the TAC Guidelines for a design speed of $60 \mathrm{~km} / \mathrm{h}$ (85 and 110 metres respectively).

Consequently, there are no issues with the sight distance available for the proposed Street A access.

6 Summary

The Township of Cavan Monaghan retained JD Engineering to prepare this traffic impact study in support of a proposed rezoning of an undeveloped property (Subject Site), for use as light industrial / employment lands. The Subject Site is located on the north side of Syer Line midblock between County Road 10 and Hutchinson Drive in the Township of Cavan Monaghan, County of Peterborough. This chapter summarizes the conclusions and recommendations from the study.

1. The proposed development is expected to generate a total of 88 AM and 80 PM peak hour trips.
2. Detailed turning movement counts and pedestrian counts were obtained from the MTO at the following intersections Highway 115 SB Ramp \& Syer Line / County Road 10 and Highway 115 NB Ramp \& Syer Line / County Road 10, completed on Tuesday, October 30th, 2018. Detailed turning movement traffic and pedestrian counts were also completed at the Larmer Line / County Road 10 intersection, completed on Tuesday, April $25^{\text {th }}, 2017$.
3. An intersection operation analysis was completed at the study area intersections, using the existing (2022) and background (2027, 2032 and 2037) traffic volumes without the proposed development traffic. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. The following improvements are recommended:

Background (2027) Traffic Volumes

- Highway 115 SB Ramp \& Syer Line / County Road 10
- Installation of traffic signals.
- Highway 115 NB Ramp \& Syer Line / County Road 10
- Installation of traffic signals.

Background (2032) Traffic Volumes

- Highway 115 SB Ramp \& Syer Line / County Road 10
- Widen the SB Off-Ramp for the construction of a westbound left turn lane with 150 metre storage length, 40 parallel length and 100 metre taper length and
- Adjust signal to accommodate a protected + permissive westbound left turn phase.
- Highway 115 NB Ramp \& Syer Line / County Road 10
- Widen the County Road 10, north of the Highway 115 NB Ramp to provide two southbound lanes. The southbound configuration at the intersection should include a through + left lane and a through + right lane.

4. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area streets and intersections.
5. An intersection operation analysis was completed under total (2027, 2032 and 2037) traffic volumes with the proposed development operational at the study area intersections. No additional improvements are recommended within the study area.
6. It is recommended the MTO and County monitor the queuing on County Road 10 and on the Highway 115 ramps as the future Millbrook developments become fully built-out and occupied,
to determine if infrastructure improvements are warranted noted for the 2027 and 2032 horizon years.
7. Street A will operate efficiently with full-movement access, with one-way stop control for southbound movements. A single ingress and egress lane at Street A will provide the necessary capacity to service the proposed development.
8. The available sight distance at Street A is sufficient for the intended use.
9. In summary, the proposed development will not cause any operational issues and will not add significant delay or congestion to the local roadway network.

Appendix A Subject Site - Property Boundary

Appendix B -
 Adjacent Development Reports

Bromont TIS

Traffic Impact Study

Residential Development (West of CR10)

Fallis Line, Millbrook, ON
Township of Cavan Monaghan, County of Peterborough

AM Peak Hour - Existing Volumes 2021

Exhibit 4: Existing AM Peak Hour Traffic Volumes (2021).

Exhibit 5: Existing PM Peak Hour Traffic Volumes (2021).

3 Background Traffic Volumes

3.1 Background Traffic Volumes

In order to establish base conditions for comparison and evaluation of future scenarios, it is necessary to review results of traffic operations over time. The estimated normal growth traffic volumes are based under the premise that existing geometric conditions is maintained and that traffic growth is expected over the next years.

As part of the background volumes; the study includes those major proposed developments that are approved or in construction; the background volumes also include the proposed development "Commercial and Residential" east of CR10 on Fallis Line; the sketch of these developments is shown in Exhibit 7. The traffic volumes of these developments were obtained from the "Millbrook Development Phase 2 Traffic Impact Study for the Tower Hill Developments Ltd." Prepared by JD Engineering; these trips are included in the appendix.

Annual growth rate was estimated at 2.0\% per year; this rate was used to project existing traffic volumes over the next years.

For estimation of the horizons years traffic volumes, the growth rate was applied to the existing volumes. The growth rate is yearly compounded.

The following Exhibits 8, 9 and 10 show the projected traffic volumes for the morning, afternoon and Saturday peak hours for the horizon years 2025 and 2030, respectively.

Sketch of Developments Within the Area

Exhibit 7: Sketch of Developments Within the Area.

AM Site Generated Trips With Diverted Trips - 2025 (Residential Site West of CR10)

Exhibit 14: AM Peak Hour Development Trips - 2025.

PM Site Generated Trips With Diverted Trips - 2025 (Residential Site West of CR10)

Exhibit 15: PM Peak Hour Development Trips - 2025.

AM Site Generated Trips With Diverted Trips - 2030 (Residential Site West of CR10)

Exhibit 17: AM Peak Hour Development Trips - 2030.

PM Site Generated Trips With Diverted Trips - 2030 (Residential Site West of CR10)

Exhibit 18: PM Peak Hour Development Trips - 2030.

Exhibit 20: AM Peak Hour Total Trips - 2025.

PM Peak Hour - Total Trips - 2025

Exhibit 21: PM Peak Hour Total Trips - 2025.

Exhibit 23: AM Peak Hour Total Trips - 2030.

Exhibit 24: PM Peak Hour Total Trips - 2030.

Millbrook Fire Hall TIS

Millbrook Fire Hall

 Township of Cavan Monaghan,

 Township of Cavan Monaghan, County of Peterborough

Traffic Impact Study for the Township of Cavan Monaghan

Type of Document:
Draft Report

Project Number:
JDE - 21138
Date Submitted:
October 29th, 2021

John Northcote, P.Eng.
Professional License \#: 100124071

Maitham Dinani, P.Eng.
Professional License \#: 100192544

Table 4 - Background (2026) LOS

Location (N-S Street / E-W Street)	Weekday AM Peak Hour			Weekday PM Peak Hour		
	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
County Road 10/Street B (unsignalized)	-	12.8	A	-	7.0	A
EB	0.92	85.1	F	0.82	82.9	F
 Community Centre Driveway (unsignalized)	-	0.3	A	-	0.3	A
	EB	0.03	12.5	B	0.06	21.0

The results of the LOS analysis indicate that the eastbound movements at the County Road 10 / Street B intersection are operating outside the typical design limits; however, no improvements are recommended as it is anticipated that eastbound traffic volumes at this intersection will redistribute as the eastbound control delay increases, to the signalized County Road 10 / Fallis Line intersection via the internal road network and various intersections constructed on Fallis Line in Phase 2 of the Millbrook Development.

The results of the LOS analysis indicate that all other intersections in the study area are operating within the typical design limits noted in Section 3.1.

For right turn movements at the unsignalized intersections in the study area, the criteria outlined in Appendix G of the VDOT RDM were applied. Based on the above noted criteria, a right turn lane is not warranted at any of the unsignalized intersections in the study area (results provided in Appendix I).

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at any of the unsignalized intersections in the study area (results are provided in Appendix H).

The anticipated $95^{\text {th }}$ percentile queue can be accommodated for all proposed storage lanes in the study area.

No additional improvements are recommended within the study area for the background (2026) scenario.

4 Proposed Development Traffic Generation and Assignment

4.1 Traffic Generation

The proposed development will be occupied by two user groups; the Township's Fire and Emergency Service and the County's Paramedic Service. Each service will generate varying levels of traffic based on the following factors: staffing / shift changes, number of emergency calls, number of visitors, number of deliveries. The AM and PM traffic generation for each service has been confirmed through discussions with Township and County staff.

The proposed development's breakdown of use by each service is summarized in Table 5.

Table 5 - Proposed Development Operational Data

Service	Number of Employees	Number of Emergency Calls	Number of Visitors	Number of Deliveries
County Paramedic Service	2 staff from 8:00-20:00 2 staff from 20:00-8:00	2 in a 24 hour period	None	1 per week
Township Fire Service	3 staff from 8:30-16:30*	2 in a 24 hour period	1-2 per week	2 per week

* Calls are responded to from home, outside staff hours

Based on our review of the information provided by the two user groups, the estimated trip generation during the AM and PM peak hour for each user group of the subject site is illustrated below in Tables 6 and 7. The total estimated trip generation for the proposed development is illustrated below in Table 8.

Table 6 - Estimated Traffic Generation for the County's Paramedic Services

	AM Peak Hour			PM Peak Hour		
	IN	OUT	TOTAL	IN	OUT	TOTAL
Employees* *	2	2	4	-	-	-
Emergency Calls** $_{\text {Visitors }}$	1	1	2	1	1	2
Deliveries***	-	-	-	-	-	-
TOTAL TRIPS	1	1	2	1	1	2

*The morning shift change occurs in the AM peak hour and the evening shift change occurs outside the peak hours
** It is assumed one emergency call will occur during each peak hour
*** It is assumed one delivery will occur during each peak hour
Table 7 - Estimated Traffic Generation for the Township's Fire Services

	AM Peak Hour			PM Peak Hour		
	IN	OUT	TOTAL	IN	OUT	TOTAL
Employees* 2	3	0	3	0	3	3
Emergency Calls** *	1	1	2	1	1	2
Visitors***	1	1	2	1	1	2
Deliveries****	1	1	2	1	1	2
TOTAL TRIPS	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{9}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{9}$

*It is assumed all staff will arrive in the AM peak hour and exit in the PM peak hour
** It is assumed one emergency call will occur during each peak hour
*** It is assumed one visitor will visit during each peak hour
**** It is assumed one delivery will occur during each peak hour

Table 8 - Estimated Traffic Generation Summary for Proposed Development

Service	AM Peak Hour			PM Peak Hour		
	IN	OUT	TOTAL	IN	OUT	TOTAL
County's Paramedic Services	4	4	8	2	2	4
Township's Fire and Emergency Services	6	3	9	3	6	9
TOTAL TRIPS	$\mathbf{1 0}$	$\mathbf{7}$	$\mathbf{1 7}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{1 3}$

No transportation modal split reduction has been applied to the above-noted traffic generation calculation.

4.2 Traffic Assignment

The distribution of traffic for the proposed development is based on the distribution of the existing traffic volumes within the study area. Table 9 illustrates the calculation of the distribution of ingress and egress traffic for the proposed development.

Table 9 - Proposed Development Traffic Distribution

Travel Direction (to / from)	AM Peak Hour		PM Peak Hour	
	Ingress	Egress	Ingress	Egress
North via County Road 10	43%	57%	57%	43%
South via County Road 10	57%	43%	43%	57%
TOTAL	$\mathbf{1 0 0 \%}$			

Using the traffic distributions pattern noted above, the traffic assignment for the proposed development was calculated for the AM and PM peak hour and is illustrated in Figure 12.

Figure 12 - Proposed Development Traffic Assignment

Appendix C -

 Traffic Count DataMinistry of Transportation
TVIS II - Traffic Volume Information System
Turning Movement Total Count and Peak Summary Report
Description: Hwy 115 @ Peterborough City Rd 10 (SRT)
Region: EASTERN Survey Type: TM - Interchange
Hwy: 115
Start Date: 30-Oct-2018 (Tue)
End Date: 30-Oct-2018 (Tue)
I/C Side: S
Int. Type: Four Leg
LHRS: 42245
Offset: 0
Schedule Summary: TUES-THURS, 07:00-09:00, 11:00-14:00, 15:00-18:00

AM Peak Hour Report

Peterborough City Rd-10

PM Peak Hour Report
Start Time: 16:15

Ontario

Ministry of Transportation

$$
\text { Description: Hwy } 115 \text { @ Peterborough City Rd } 10 \text { (SRT) }
$$

Survey Type: TM - Interchange

I/C Side: S
End Date: 30-Oct-2018 (Tue) Int. Type: Four Leg
Schedule Summary: TUES-THURS, 07:00-09:00, 11:00-14:00, 15:00-18:00

	Major Road Approaches																				Minor Road Approaches																			$\begin{array}{\|c\|} \hline \text { Total } \\ \text { Veh. } \end{array}$
	NorthPeterborough City Rd 10										South Peterborough City Rd 10										East Syer Line: Ramp(s): none										West Hwy 115									
Time		Cars	\rightarrow		Trucks		$\begin{array}{cc} \text { Long Trucks } \\ \leftarrow \quad \uparrow \quad \rightarrow \end{array}$			号		Cars			Trucks		$\begin{array}{\|c\|} \hline \text { Long Trucks } \\ \leftarrow \\ \leftarrow \end{array}$			号	\leftarrow	Cars			Trucks		$\stackrel{\text { Long }}{\leftarrow}$	$\xrightarrow{\text { Trucks }}$				ars			$\stackrel{\text { rucks }}{ }+$		Heavy Trucks		¢	
Period 1																																								
07:00	0	26	1	0	0	0	0	0	0	00	17	713	1	0	00		0	0	0	0	0	0		0	0	0	0	00	0	0	2	0	1	0	0	1	0	2	0	65
07:15	1	28	2	0	0	0	- 1	3	0	00	24	4	0	0	01	0	- 0	1	0	0	0	0		0	0	0	0	0	00	0	7	0	1	0	0	1	0	0		80
07:30	1	40	3	0	3	0	- 1	0	0	0 O	34	420	1	0	0	0	- 1	2	0	0	2	2	3	0	0	0	0	0	0	0	8	0	3	0	0	0	0	1		125
07:45	3	61	5	0	3	0	0	1	1	20	29	922	2	22	21		- 1	0	0	0	0	1	4	0	0	0	0	0	0	0	7	0	2	0	0	1	0	1		148
08:00	3	32	4	0	1	0	0	0	1	10	30	024	0	0	0		0	3	0	0	2	0		0	0	0	0	0	0	0	9	0	1	0	0	1	0	1		115
08:15	4	39	1	0	1	0	0	0	0	00	38	818	3	1	1		- 1	0	0	0	4	0		0	0	0	0	0	0	0	2	0	4	0	0	0	0	0		118
08:30	1	31	1	0	1	0	0	1	10	0	27	718	1	0	0.0	0	0	0	0	0	0	0		0	0	0	0	0	0		4	1	1	0	0	1	0	1		90
08:45	2	29	5	0	0	0	0	1	1	0	19	13	1	1	11		0	0	0	0	0	0	4	0	0	0	0	0	0	0	5	2	4	1	0	1	0	0	0	90
Period 2																																								
11:00	5	29	4	0	2	1	0	0	1	10	19	912	1	1	10		- 1	1	0	0	4	1		0	0	0	0	00	0	0	6	0	1	0	0 0	1	0	0		95
11:15	2	23	2	0	2	0	0	1	10	00	21	115	1	1	1		- 1	4	0	0	2	- 1	2	0	0	0	0	0	0	0	9	2	3	0	0	0	0	0		92
11:30	5	29	4	0	2	0	0	1	0	00	13	315	2	0	0		0.0	0	0	0	3	1	3	0	0	0	0	0	0	0	2	0	6	2	0	0	0	2		91
11:45	3	19	2	0	1	0	0	0	0	00	${ }^{7}$	17	0	0	0		0	2	0	0	3	0	2	0	0	0	0	0	00	0	3	2	0	0	0	1	0	0		63
12:00	2	26	4	0	0	0	0	1	1	\bigcirc	16	617	1	1	11		0	1	0	0	5	0	2	0	0	0	0	0	0	0	7	0	1	0	0	0	0	1		86
12:15	4	28	5	0	3	0	0	2	20	00	9	918	4	3	3		0	2	0	0	1	0		0	0	0	0	0	00	0	1	1	2	0	0	0	0	0		87
12:30	2	27	4	0	0	0	0	0	0	0	18	818	6	1	1		0	0	0	0	5	0		1	0	0	0	0	00		5	1	0	0	1	- 0	0	2		91
12:45	3	30	2	0	0	1	0	0	0	00		913	3	0	02	0	0	3	0	0	2	1		0	0	0	0	0	0	0	4	0	2	0	0	0	0	0		76
13:00	4	21	3	0	2	1	0	1	1	1	19	917	${ }^{6}$	0	00		- 0	1	0	0	1	2		0	0	1	0	0	0		8	1	0	0	0	1	0	0		93
13:15	7	24	3	0	2	1	0	0	0	00	21	110	0	0	01		0	1	0	0	2	0	3	0	0	0	0	0	0		8	0	2	0	0	0	0	0		85
13:30	0	30	3	0	0	0	0	0	01	10	15	515	4	1	14		0	0	0	0	2	1		0	0	0	0	0	0	0	6	2	1	0	0	0	0	3		92
13:45	2	31	4	0	1	0	0	0	1	10	15	$5 \quad 21$	3	0	0	0	0	2	0	0	0	2	4	0	0	0	0	0	0	0	2	2	0	0	0	2	0	0	0	92
Period 3																																								
15:00	3	28	1	0	0	1	. 1	1	1	1.	26	26	2	2	22		-	1	0	0	0	1		0	0	0	0	1	20	O	12	0	3	0	0	1	0	0	0	124
15:15	7	40	6	0	0	1	1	1	,	00		820	3	31	10		- 1	,	0	0	2	1	2	0	0	O		0	0		13	-	,	0	00	0	0	2		112

Hwy: 115
LHRS: 42245 Offset: 0

Ontario

Ministry of Transportation

Description: Hwy 115 @ Peterborough City Rd 10 (SRT)
Survey Type: TM - Interchange I/C Side: S Int. Type: Four Leg

TVIS II - Traffic Volume Information System
Turning Movement 15 Minute Report

Ministry of Transportation
TVIS II - Traffic Volume Information System
Turning Movement Total Count and Peak Summary Report
Description: HWY 115 @ PETERBOROUGH RD 10 / SYER LINE (NRT)

Region: EASTERN	Survey Type: TM - Interchange
Start Date:	$30-$ Oct-2018 (Tue)

Hwy: 115
LHRS: 42245
Offset: 0
Schedule Summary: TUES-THURS, 07:00-09:00, 11:00-14:00, 15:00-18:00

Total Count

Midday Peak Hour Report
Start Time: 13:00

AM Peak Hour Report

PM Peak Hour Report
Start Time: 16:30

$$
\begin{array}{cccccccc}
\hline \leftarrow & & & \\
\hline
\end{array}
$$

PETERBOROUGH RD 10

∞

N	a
N	$\stackrel{\rightharpoonup}{\perp}$

| σ | $\vec{\omega}$ | $\overrightarrow{0}$ | v | 0 | ∞ | 0 | ∞ | ∞ | \vec{v} | \vec{v} | ∞ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\dot{\vec{\omega}}$ | $\vec{\omega}$ | \vec{v} | $\vec{\rightharpoonup}$ | \vec{v} | $\vec{\sigma}$ | \vec{v} | \vec{v} | \vec{v} | $\vec{\omega}$ | $\vec{\sigma}$ | \vec{v} |

$\leftarrow \underset{\text { ssej }}{\downarrow} \rightarrow$	\％		$\leftarrow \underset{\text { syэn } \perp}{\downarrow} \rightarrow$	$\leftarrow \underset{\text { sıej }}{\downarrow} \rightarrow$	\％	$\leftarrow \quad \downarrow \quad \rightarrow$ syวnı上 6иоา	$\leftarrow \underset{\text { syวn } \perp 1}{\downarrow} \rightarrow$	$\leftarrow \underset{\text { suej }}{\downarrow} \rightarrow$	\％		$\leftarrow \underset{\text { syวnı1 }}{\downarrow} \rightarrow$	$\underset{\text { suej }}{\downarrow} \rightarrow$	$\begin{aligned} & \text { aw! } 1 \\ & \text { Lets } \end{aligned}$
		1ε＇ε ：：（s）duey ：dWVY sIL AMH 7seg			ol ay HפกOyogyヨコヨd yłnos				ol ay Honoyogy чมัก				
soureadd \forall peoy dou！w					səuэeoddd \forall peoy do！ew								

ω	0	ω	\rightarrow	\rightarrow	ω	
0	0	\rightarrow	-	0	0	0

$\left.\begin{array}{llllllllll}0 & \omega & \omega \rightarrow & 0 & 0 & 0 & 0 & \omega \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Ontario Traffic Inc

Total Count Diagram

Comments

Appendix D Synchro Analysis Output Existing Traffic Volumes

	4			\checkmark			4	\dagger	1	*	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			${ }_{4}$		${ }^{*}$	\hat{F}			¢	
Traffic Volume (veh/h)	31	0	14	9	3	9	150	212	6	13	196	18
Future Volume (Veh/h)	31	0	14	9	3	9	150	212	6	13	196	18
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Hourly flow rate (vph)	36	0	16	11	4	11	176	249	7	15	231	21
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX , platoon unblocked												
vC , conflicting volume	886	880	242	892	886	252	252			256		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	886	880	242	892	886	252	252			256		
tC, single (s)	7.2	6.5	6.4	7.1	6.5	6.2	4.1			4.2		
tC, 2 stage (s)												
tF (s)	3.6	4.0	3.5	3.5	4.0	3.3	2.2			2.3		
p0 queue free \%	84	100	98	95	98	99	86			99		
cM capacity (veh/h)	225	246	748	230	244	791	1302			1275		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1							
Volume Total	52	26	176	256	267							
Volume Left	36	11	176	0	15							
Volume Right	16	11	0	7	21							
cSH	287	333	1302	1700	1275							
Volume to Capacity	0.18	0.08	0.14	0.15	0.01							
Queue Length 95th (m)	5.2	2.0	3.7	0.0	0.3							
Control Delay (s)	20.3	16.7	8.2	0.0	0.5							
Lane LOS	C	C	A		A							
Approach Delay (s)	20.3	16.7	3.3		0.5							
Approach LOS	C	C										
Intersection Summary												
Average Delay			4.0									
Intersection Capacity Utilization			40.1\%	ICU Level of Service					A			
Analysis Period (min)			15									

	$\stackrel{ }{*}$			7			4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			4		\%	$\hat{\beta}$			*	
Traffic Volume (veh/h)	114	9	35	3	5	8	80	171	9	9	349	30
Future Volume (Veh/h)	114	9	35	3	5	8	80	171	9	9	349	30
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	120	9	37	3	5	8	84	180	9	9	367	32
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX , platoon unblocked												
vC , conflicting volume	760	758	383	795	770	184	399			189		
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	760	758	383	795	770	184	399			189		
tC , single (s)	7.1	6.5	6.3	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.4	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	59	97	94	99	98	99	93			99		
cM capacity (veh/h)	295	312	649	267	308	863	1165			1397		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1							
Volume Total	166	16	84	189	408							
Volume Left	120	3	84	0	9							
Volume Right	37	8	0	9	32							
cSH	337	435	1165	1700	1397							
Volume to Capacity	0.49	0.04	0.07	0.11	0.01							
Queue Length 95th (m)	20.8	0.9	1.9	0.0	0.2							
Control Delay (s)	25.6	13.6	8.3	0.0	0.2							
Lane LOS	D	B	A		A							
Approach Delay (s)	25.6	13.6	2.6		0.2							
Approach LOS	D	B										
Intersection Summary												
Average Delay			6.1									
Intersection Capacity Utilization			59.2\%	ICU Level of Service					B			
Analysis Period (min)			15									

Appendix E-
 Synchro Analysis Output Background Traffic Volumes

	\rangle			7			4	\dagger		*	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			4		\%	\uparrow			*	
Traffic Volume (veh/h)	35	0	24	10	3	10	539	267	7	14	435	20
Future Volume (Veh/h)	35	0	24	10	3	10	539	267	7	14	435	20
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Hourly flow rate (vph)	41	0	28	12	4	12	634	314	8	16	512	24
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	2152	2146	524	2170	2154	318	536			322		
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	2152	2146	524	2170	2154	318	536			322		
tC , single (s)	7.2	6.5	6.4	7.1	6.5	6.2	4.1			4.2		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.6	4.0	3.5	3.5	4.0	3.3	2.2			2.3		
p0 queue free \%	0	100	95	26	78	98	38			99		
cM capacity (veh/h)	14	18	514	16	18	727	1022			1205		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1							
Volume Total	69	28	634	322	552							
Volume Left	41	12	634	0	16							
Volume Right	28	12	0	8	24							
cSH	23	29	1022	1700	1205							
Volume to Capacity	2.97	0.98	0.62	0.19	0.01							
Queue Length 95th (m)) 69.6	25.6	35.9	0.0	0.3							
Control Delay (s)	1238.9	361.9	14.1	0.0	0.4							
Lane LOS	F	F	B		A							
Approach Delay (s)	1238.9	361.9	9.3		0.4							
Approach LOS	F	F										
Intersection Summary												
Average Delay			65.3									
Intersection Capacity Utilization			74.8\%	ICU Level of Service					D			
			15									

	\rangle			7			4	\dagger	7	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			4		*	$\hat{\beta}$			*	
Traffic Volume (veh/h)	128	10	54	3	6	9	376	213	10	10	795	34
Future Volume (Veh/h)	128	10	54	3	6	9	376	213	10	10	795	34
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	135	11	57	3	6	9	396	224	11	11	837	36
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX , platoon unblocked												
vC , conflicting volume	1905	1904	855	1961	1916	230	873			235		
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	1905	1904	855	1961	1916	230	873			235		
tC , single (s)	7.1	6.5	6.3	7.1	6.5	6.2	4.1			4.1		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.5	4.0	3.4	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	0	67	84	84	82	99	49			99		
cM capacity (veh/h)	27	34	348	18	33	815	777			1344		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1							
Volume Total	203	18	396	235	884							
Volume Left	135	3	396	0	11							
Volume Right	57	9	0	11	36							
cSH	36	51	777	1700	1344							
Volume to Capacity	5.58	0.35	0.51	0.14	0.01							
Queue Length 95th (m)	Err	10.1	23.5	0.0	0.2							
Control Delay (s)	Err	110.5	14.3	0.0	0.2							
Lane LOS	F	F	B		A							
Approach Delay (s)	Err	110.5	9.0		0.2							
Approach LOS	F	F										
Intersection Summary												
Average Delay			1173.8									
Intersection Capacity Utilization			99.4\%	ICU Level of Service					F			
			15									

Cycle Length: 110
Actuated Cycle Length: 110
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

	$\stackrel{ }{ }$				4	4		\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\dagger		\$	${ }^{7}$	F		\dagger
Traffic Volume (vph)	35	0	10	3	539	267	14	435
Future Volume (vph)	35	0	10	3	539	267	14	435
Lane Group Flow (vph)	0	69	0	28	634	322	0	552
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	NA
Protected Phases		4		8	5	2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	5	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	20.0	20.0	20.0
Minimum Split (s)	38.3	38.3	38.3	38.3	9.5	28.4	28.4	28.4
Total Split (s)	38.3	38.3	38.3	38.3	29.0	81.7	52.7	52.7
Total Split (\%)	31.9\%	31.9\%	31.9\%	31.9\%	24.2\%	68.1\%	43.9\%	43.9\%
Yellow Time (s)	4.2	4.2	4.2	4.2	3.0	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	1.6	1.6	0.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0
Total Lost Time (s)		5.8		5.8	3.0	5.6		5.6
Lead/Lag					Lead		Lag	Lag
Lead-Lag Optimize?					Yes		Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max
v/c Ratio		0.40		0.17	0.82	0.25		0.68
Control Delay		24.2		29.9	17.0	3.3		24.3
Queue Delay		0.0		0.0	0.0	0.0		0.0
Total Delay		24.2		29.9	17.0	3.3		24.3
Queue Length 50th (m)		3.3		2.9	36.7	13.8		82.3
Queue Length 95th (m)		14.9		10.6	\#85.0	22.1		115.6
Internal Link Dist (m)		658.6		1175.6		599.4		491.5
Turn Bay Length (m)					85.0			
Base Capacity (vph)		436		506	776	1293		813
Starvation Cap Reductn		0		0	0	0		0
Spillback Cap Reductn		0		0	0	0		0
Storage Cap Reductn		0		0	0	0		0
Reduced v/c Ratio		0.16		0.06	0.82	0.25		0.68
Intersection Summary								

Cycle Length: 120
Actuated Cycle Length: 94.7
Natural Cycle: 130
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Cycle Length: 120
Actuated Cycle Length: 113.7
Natural Cycle: 120
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

Cycle Length: 110
Actuated Cycle Length: 110
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Syer Line Industrial
1: County Road 10 \& Syer Line/Highway 115 SB Ramp
Background (2032) AM Peak Hour

Cycle Length: 120
Actuated Cycle Length: 94.9
Natural Cycle: 150
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Cycle Length: 120
Actuated Cycle Length: 115.7
Natural Cycle: 150
Control Type: Semi Act-Uncoord
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

Cycle Length: 120
Actuated Cycle Length: 120
Offset: $0(0 \%)$, Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

	\rangle				4	\uparrow		\dagger
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\dagger		\$	${ }^{7}$	$\hat{\beta}$		¢ \uparrow
Traffic Volume (vph)	40	0	11	4	609	296	16	474
Future Volume (vph)	40	0	11	4	609	296	16	474
Lane Group Flow (vph)	0	79	0	31	716	356	0	605
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	NA
Protected Phases		4		8	5	2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	5	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	20.0	20.0	20.0
Minimum Split (s)	38.3	38.3	38.3	38.3	9.5	28.4	28.4	28.4
Total Split (s)	38.3	38.3	38.3	38.3	46.0	81.7	35.7	35.7
Total Split (\%)	31.9\%	31.9\%	31.9\%	31.9\%	38.3\%	68.1\%	29.8\%	29.8\%
Yellow Time (s)	4.2	4.2	4.2	4.2	3.0	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	1.6	1.6	0.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0
Total Lost Time (s)		5.8		5.8	3.0	5.6		5.6
Lead/Lag					Lead		Lag	Lag
Lead-Lag Optimize?					Yes		Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max
v/c Ratio		0.45		0.18	0.79	0.28		0.65
Control Delay		27.4		29.8	19.0	3.6		32.5
Queue Delay		0.0		0.0	0.0	0.0		0.0
Total Delay		27.4		29.8	19.0	3.6		32.5
Queue Length 50th (m)		5.2		3.3	73.2	15.7		54.3
Queue Length 95th (m)		18.0		11.3	121.9	26.6		71.5
Internal Link Dist (m)		658.6		1175.6		599.4		491.5
Turn Bay Length (m)					85.0			
Base Capacity (vph)		434		501	903	1291		934
Starvation Cap Reductn		0		0	0	0		0
Spillback Cap Reductn		0		0	0	0		0
Storage Cap Reductn		0		0	0	0		0
Reduced v/c Ratio		0.18		0.06	0.79	0.28		0.65
Intersection Summary								

Cycle Length: 120
Actuated Cycle Length: 94.9
Natural Cycle: 120
Control Type: Semi Act-Uncoord
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

	\rangle				4	4		\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		¢	\%	$\hat{}$		\dagger	\%	F
Traffic Volume (vph)	21	9	658	28	23	330	69	250
Future Volume (vph)	21	9	658	28	23	330	69	250
Lane Group Flow (vph)	0	68	693	41	0	403	73	276
Turn Type	Perm	NA	pm+pt	NA	Perm	NA	Perm	NA
Protected Phases		4	3	8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	3	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	5.0	10.0	20.0	20.0	20.0	20.0
Minimum Split (s)	39.2	39.2	9.5	39.2	25.6	25.6	25.6	25.6
Total Split (s)	39.2	39.2	36.3	75.5	44.5	44.5	44.5	44.5
Total Split (\%)	32.7\%	32.7\%	30.3\%	62.9\%	37.1\%	37.1\%	37.1\%	37.1\%
Yellow Time (s)	3.3	3.3	3.0	4.2	4.6	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	0.0	1.6	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		4.9	3.0	5.8		5.6	5.6	5.6
Lead/Lag	Lag	Lag	Lead					
Lead-Lag Optimize?	Yes	Yes	Yes					
Recall Mode	Max	Max	None	Max	C-Max	C-Max	C-Max	C-Max
v/c Ratio		0.16	0.81	0.05		0.77	0.38	0.52
Control Delay		18.0	25.7	8.5		47.2	38.4	36.9
Queue Delay		0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		18.0	25.7	8.5		47.2	38.4	36.9
Queue Length 50th (m)		5.6	109.7	2.9		88.6	13.9	54.9
Queue Length 95th (m)		17.3	155.6	8.0		129.1	29.2	82.9
Internal Link Dist (m)		592.7		625.0		491.5		559.6
Turn Bay Length (m)			100.0				82.0	
Base Capacity (vph)		426	857	907		526	192	534
Starvation Cap Reductn		0	0	0		0	0	0
Spillback Cap Reductn		0	0	0		0	0	0
Storage Cap Reductn		0	0	0		0	0	0
Reduced v/c Ratio		0.16	0.81	0.05		0.77	0.38	0.52

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Cycle Length: 120
Actuated Cycle Length: 115.3
Natural Cycle: 90
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

			4		4		*	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\&		4	${ }^{*}$	个		$\uparrow \uparrow$
Traffic Volume (vph)	47	1	12	5	632	325	24	499
Future Volume (vph)	47	1	12	5	632	325	24	499
Lane Group Flow (vph)	0	90	0	35	744	393	0	648
Turn Type	Perm	NA	Perm	NA	pm+pt	NA	Perm	NA
Protected Phases		4		8	5	2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	5	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	20.0	20.0	20.0
Minimum Split (s)	38.3	38.3	38.3	38.3	9.5	28.4	28.4	28.4
Total Split (s)	38.3	38.3	38.3	38.3	46.0	81.7	35.7	35.7
Total Split (\%)	31.9\%	31.9\%	31.9\%	31.9\%	38.3\%	68.1\%	29.8\%	29.8\%
Yellow Time (s)	4.2	4.2	4.2	4.2	3.0	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	1.6	1.6	0.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0
Total Lost Time (s)		5.8		5.8	3.0	5.6		5.6
Lead/Lag					Lead		Lag	Lag
Lead-Lag Optimize?					Yes		Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max
v/c Ratio		0.54		0.18	0.85	0.31		0.72
Control Delay		43.0		28.3	26.0	4.4		35.7
Queue Delay		0.0		0.0	0.0	0.0		0.0
Total Delay		43.0		28.3	26.0	4.4		35.7
Queue Length 50th (m)		12.5		3.7	91.1	18.6		60.4
Queue Length 95th (m)		26.8		11.9	\#171.5	35.8		82.1
Internal Link Dist (m)		658.6		1175.6		599.4		491.5
Turn Bay Length (m)					85.0			
Base Capacity (vph)		412		493	871	1273		905
Starvation Cap Reductn		0		0	0	0		0
Spillback Cap Reductn		0		0	0	0		0
Storage Cap Reductn		0		0	0	0		0
Reduced v/c Ratio		0.22		0.07	0.85	0.31		0.72
Intersection Summary								

Cycle Length: 120
Actuated Cycle Length: 96.5
Natural Cycle: 130
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

		\rightarrow			4	\dagger	\checkmark	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\uparrow	\%	\hat{F}		\dagger	${ }^{7}$	\uparrow
Traffic Volume (vph)	23	10	686	31	26	364	79	284
Future Volume (vph)	23	10	686	31	26	364	79	284
Lane Group Flow (vph)	0	76	722	48	0	445	83	313
Turn Type	Perm	NA	pm+pt	NA	Perm	NA	Perm	NA
Protected Phases		4	3	8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	3	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	5.0	10.0	20.0	20.0	20.0	20.0
Minimum Split (s)	39.2	39.2	9.5	39.2	25.6	25.6	25.6	25.6
Total Split (s)	39.2	39.2	36.3	75.5	44.5	44.5	44.5	44.5
Total Split (\%)	32.7\%	32.7\%	30.3\%	62.9\%	37.1\%	37.1\%	37.1\%	37.1\%
Yellow Time (s)	3.3	3.3	3.0	4.2	4.6	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	0.0	1.6	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		4.9	3.0	5.8		5.6	5.6	5.6
Lead/Lag	Lag	Lag	Lead					
Lead-Lag Optimize?	Yes	Yes	Yes					
Recall Mode	Max	Max	None	Max	C-Max	C-Max	C-Max	C-Max
v/c Ratio		0.18	0.85	0.05		0.85	0.48	0.59
Control Delay		18.0	28.7	8.3		54.0	43.4	39.0
Queue Delay		0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		18.0	28.7	8.3		54.0	43.4	39.0
Queue Length 50th (m)		6.4	117.9	3.3		101.6	16.4	64.1
Queue Length 95th (m)		19.0	\#176.0	8.8		\#159.4	34.4	95.2
Internal Link Dist (m)		592.7		625.0		491.5		559.6
Turn Bay Length (m)			100.0				82.0	
Base Capacity (vph)		422	850	904		524	174	534
Starvation Cap Reductn		0	0	0		0	0	0
Spillback Cap Reductn		0	0	0		0	0	0
Storage Cap Reductn		0	0	0		0	0	0
Reduced v/c Ratio		0.18	0.85	0.05		0.85	0.48	0.59
Intersection Summary								

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Cycle Length: 120
Actuated Cycle Length: 117.2
Natural Cycle: 100
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

Appendix F Synchro Analysis Output Total Traffic Volumes

					4	\dagger	\checkmark	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\$		${ }_{\text {¢ }}$		¢	\%	\uparrow
Traffic Volume (vph)	6	5	340	15	13	280	102	146
Future Volume (vph)	6	5	340	15	13	280	102	146
Lane Group Flow (vph)	0	49	0	441	0	412	121	180
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	20.0	20.0	20.0	20.0
Minimum Split (s)	39.2	39.2	39.2	39.2	25.6	25.6	25.6	25.6
Total Split (s)	64.0	64.0	64.0	64.0	46.0	46.0	46.0	46.0
Total Split (\%)	58.2\%	58.2\%	58.2\%	58.2\%	41.8\%	41.8\%	41.8\%	41.8\%
Yellow Time (s)	3.3	3.3	4.2	4.2	4.6	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	1.6	1.6	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0		0.0	0.0	0.0
Total Lost Time (s)		4.9		5.8		5.6	5.6	5.6
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	Max	Max	Max	Max	C-Max	C-Max	C-Max	C-Max
v/c Ratio		0.06		0.68		0.72	0.51	0.30
Control Delay		5.6		25.6		37.8	36.5	26.1
Queue Delay		0.0		0.0		0.0	0.0	0.0
Total Delay		5.6		25.6		37.8	36.5	26.1
Queue Length 50th (m)		1.3		69.7		77.4	21.1	28.2
Queue Length 95th (m)		6.4		96.9		104.7	37.8	42.7
Internal Link Dist (m)		592.7		625.0		491.5		559.6
Turn Bay Length (m)							82.0	
Base Capacity (vph)		769		648		570	236	605
Starvation Cap Reductn		0		0		0	0	0
Spillback Cap Reductn		0		0		0	0	0
Storage Cap Reductn		0		0		0	0	0
Reduced v/c Ratio		0.06		0.68		0.72	0.51	0.30
Intersection Summary								

Cycle Length: 110
Actuated Cycle Length: 110
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Cycle Length: 120
Actuated Cycle Length: 94.9
Natural Cycle: 150
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Cycle Length: 120
Actuated Cycle Length: 114.6
Natural Cycle: 120
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 65
Control Type: Actuated-Coordinated
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Cycle Length: 120
Actuated Cycle Length: 96.2
Natural Cycle: 130
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

			7		4		-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\dagger	${ }^{7}$	\uparrow		\&	${ }^{7}$	\uparrow
Traffic Volume (vph)	21	9	667	28	23	346	69	255
Future Volume (vph)	21	9	667	28	23	346	69	255
Lane Group Flow (vph)	0	68	702	41	0	426	73	281
Turn Type	Perm	NA	pm+pt	NA	Perm	NA	Perm	NA
Protected Phases		4	3	8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	3	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	5.0	10.0	20.0	20.0	20.0	20.0
Minimum Split (s)	39.2	39.2	9.5	39.2	25.6	25.6	25.6	25.6
Total Split (s)	39.2	39.2	36.3	75.5	44.5	44.5	44.5	44.5
Total Split (\%)	32.7\%	32.7\%	30.3\%	62.9\%	37.1\%	37.1\%	37.1\%	37.1\%
Yellow Time (s)	3.3	3.3	3.0	4.2	4.6	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	0.0	1.6	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		4.9	3.0	5.8		5.6	5.6	5.6
Lead/Lag	Lag	Lag	Lead					
Lead-Lag Optimize?	Yes	Yes	Yes					
Recall Mode	Max	Max	None	Max	C-Max	C-Max	C-Max	C-Max
v/c Ratio		0.16	0.82	0.05		0.81	0.40	0.53
Control Delay		18.0	26.4	8.5		50.4	39.7	37.1
Queue Delay		0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		18.0	26.4	8.5		50.4	39.7	37.1
Queue Length 50th (m)		5.6	112.3	2.9		95.6	14.0	56.2
Queue Length 95th (m)		17.3	159.3	8.0		\#148.0	29.6	84.6
Internal Link Dist (m)		592.7		625.0		491.5		559.6
Turn Bay Length (m)			100.0				82.0	
Base Capacity (vph)		424	857	907		526	182	534
Starvation Cap Reductn		0	0	0		0	0	0
Spillback Cap Reductn		0	0	0		0	0	0
Storage Cap Reductn		0	0	0		0	0	0
Reduced v/c Ratio		0.16	0.82	0.05		0.81	0.40	0.53
Intersection Summary								

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

	\prime				4	\dagger		\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		\uparrow		\uparrow	\%	\uparrow		${ }^{\text {A }}$
Traffic Volume (vph)	143	13	12	38	407	233	25	886
Future Volume (vph)	143	13	12	38	407	233	25	886
Lane Group Flow (vph)	0	228	0	87	428	259	0	1003
Turn Type	Perm	NA	Perm		pm+pt	NA	Perm	NA
Protected Phases		4		8	5	2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	5	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	20.0	20.0	20.0
Minimum Split (s)	33.6	33.6	33.6	33.6	9.5	25.6	25.6	25.6
Total Split (s)	34.0	34.0	34.0	34.0	39.0	86.0	47.0	47.0
Total Split (\%)	28.3\%	28.3\%	28.3\%	28.3\%	32.5\%	71.7\%	39.2\%	39.2\%
Yellow Time (s)	4.2	4.2	4.2	4.2	3.0	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	1.6	1.6	0.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0	0.0		0.0
Total Lost Time (s)		5.8		5.8	3.0	5.6		5.6
Lead/Lag					Lead		Lag	Lag
Lead-Lag Optimize?					Yes		Yes	Yes
Recall Mode	None	None	None	None	None	Max	Max	Max
v/c Ratio		0.87		0.25	0.82	0.23		0.79
Control Delay		71.7		29.1	33.9	7.5		36.8
Queue Delay		0.0		0.0	0.0	0.0		0.0
Total Delay		71.7		29.1	33.9	7.5		36.8
Queue Length 50th (m)		49.8		12.3	65.4	21.6		115.4
Queue Length 95th (m)		\#89.9		26.9	104.3	34.4		\#173.1
Internal Link Dist (m)		658.6		1175.6		599.4		491.5
Turn Bay Length (m)					85.0			
Base Capacity (vph)		306		400	615	1142		1277
Starvation Cap Reductn		0		0	0	0		0
Spillback Cap Reductn		0		0	0	0		0
Storage Cap Reductn		0		0	0	0		0
Reduced v/c Ratio		0.75		0.22	0.70	0.23		0.79

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 116
Natural Cycle: 90
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

					4	\dagger	\checkmark	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		¢	\%	F		¢	\%	\uparrow
Traffic Volume (vph)	7	6	397	17	15	316	114	183
Future Volume (vph)	7	6	397	17	15	316	114	183
Lane Group Flow (vph)	0	55	473	50	0	464	136	224
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA
Protected Phases		4		8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	8	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	20.0	20.0	20.0	20.0
Minimum Split (s)	39.2	39.2	39.2	39.2	25.6	25.6	25.6	25.6
Total Split (s)	65.0	65.0	65.0	65.0	55.0	55.0	55.0	55.0
Total Split (\%)	54.2\%	54.2\%	54.2\%	54.2\%	45.8\%	45.8\%	45.8\%	45.8\%
Yellow Time (s)	3.3	3.3	4.2	4.2	4.6	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	1.6	1.6	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		4.9	5.8	5.8		5.6	5.6	5.6
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	Max	Max	Max	Max	C-Max	C-Max	C-Max	C-Max
v/c Ratio		0.07	0.76	0.07		0.73	0.53	0.33
Control Delay		6.8	34.3	8.5		37.2	35.5	25.7
Queue Delay		0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		6.8	34.3	8.5		37.2	35.5	25.7
Queue Length 50th (m)		1.8	92.1	2.5		93.5	24.9	37.1
Queue Length 95th (m)		7.8	123.5	8.4		121.9	42.7	52.9
Internal Link Dist (m)		592.7		625.0		491.5		559.6
Turn Bay Length (m)			100.0				82.0	
Base Capacity (vph)		744	622	739		636	259	678
Starvation Cap Reductn		0	0	0		0	0	0
Spillback Cap Reductn		0	0	0		0	0	0
Storage Cap Reductn		0	0	0		0	0	0
Reduced v/c Ratio		0.07	0.76	0.07		0.73	0.53	0.33
Intersection Summary								

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 70
Control Type: Actuated-Coordinated
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Cycle Length: 120
Actuated Cycle Length: 97.1
Natural Cycle: 150
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

			7		4		-	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations		$\stackrel{1}{\$}$	${ }^{7}$	\uparrow		4	${ }^{7}$	\uparrow
Traffic Volume (vph)	23	10	695	31	26	380	79	289
Future Volume (vph)	23	10	695	31	26	380	79	289
Lane Group Flow (vph)	0	76	732	48	0	468	83	318
Turn Type	Perm	NA	pm+pt	NA	Perm	NA	Perm	NA
Protected Phases		4	3	8		2		6
Permitted Phases	4		8		2		6	
Detector Phase	4	4	3	8	2	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	5.0	10.0	20.0	20.0	20.0	20.0
Minimum Split (s)	39.2	39.2	9.5	39.2	25.6	25.6	25.6	25.6
Total Split (s)	39.2	39.2	36.3	75.5	44.5	44.5	44.5	44.5
Total Split (\%)	32.7\%	32.7\%	30.3\%	62.9\%	37.1\%	37.1\%	37.1\%	37.1\%
Yellow Time (s)	3.3	3.3	3.0	4.2	4.6	4.6	4.6	4.6
All-Red Time (s)	1.6	1.6	0.0	1.6	1.0	1.0	1.0	1.0
Lost Time Adjust (s)		0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		4.9	3.0	5.8		5.6	5.6	5.6
Lead/Lag	Lag	Lag	Lead					
Lead-Lag Optimize?	Yes	Yes	Yes					
Recall Mode	Max	Max	None	Max	C-Max	C-Max	C-Max	C-Max
v/c Ratio		0.18	0.86	0.05		0.89	0.51	0.60
Control Delay		18.1	29.8	8.3		59.5	45.6	39.3
Queue Delay		0.0	0.0	0.0		0.0	0.0	0.0
Total Delay		18.1	29.8	8.3		59.5	45.6	39.3
Queue Length 50th (m)		6.4	120.8	3.3		109.2	16.6	65.4
Queue Length 95th (m)		19.0	\#185.4	8.8		\#172.8	35.2	97.1
Internal Link Dist (m)		592.7		625.0		491.5		559.6
Turn Bay Length (m)			100.0				82.0	
Base Capacity (vph)		420	850	904		523	164	533
Starvation Cap Reductn		0	0	0		0	0	0
Spillback Cap Reductn		0	0	0		0	0	0
Storage Cap Reductn		0	0	0		0	0	0
Reduced v/c Ratio		0.18	0.86	0.05		0.89	0.51	0.60
Intersection Summary								

Cycle Length: 120
Actuated Cycle Length: 120
Offset: 0 (0\%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 90
Control Type: Actuated-Coordinated
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: County Road 10 \& Syer Line/Highway 115 SB Ramp

Cycle Length: 120
Actuated Cycle Length: 118.2
Natural Cycle: 100
Control Type: Semi Act-Uncoord
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Highway 115 NB Ramp/Syer Line \& County Road 10

Appendix G MTO Left Turn Analysis

Highway 115 SB Ramp \& Syer Line / County Road 10

Highway 115 SB Ramp \& Syer Line / County Road 10

Highway 115 SB Ramp \& Syer Line / County Road 10

Exhibit 9A-9

Appendix H -
 OTM Signal Justification Sheets

Justification No. 7-2027 Background Traffic

Highway 115 SB Ramp \& Syer Line / County Road $1($

Justification	Description	Free Flow	Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
			Numerical	\%			
1. Minimum Vehicluar	A. Vehicle volume, all aproaches (average hour)	480	558	116\%		NO	YES
Volume	B. Vehicle volume, along minor streets (average hour)	120	263	219\%	97\%	YES	YES
	A. Vehicle volume, major street (average hour)	480	272	57\%		NO	NO
2. Delay to cross traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	240	481\%	47\%	YES	YES

Justification No. 7-2037 Total Traffic

Highway 115 SB Ramp \& Syer Line / County Road 1(

Justification	Description		Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
		Rest. Flow	Numerical	\%			
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches (average hour)	480	703	147\%	122\%	YES	YES
	B. Vehicle volume, along minor streets (average hour)	120	324	270\%		YES	YES
	A. Vehicle volume, major street (average hour)	480	350	73\%	61\%	NO	NO
2. Delay to cross traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	292	584\%		YES	YES

Justification No. 7-2027 Background Traffic

Highway 115 NB Ramp \& Syer Line / County Road 1(

Justification	Description		Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
		Free Flow	Numerical	\%			
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches (average hour)	480	753	157\%	51\%	YES	YES
	B. Vehicle volume, along minor streets (average hour)	120	73	61\%		NO	NO
	A. Vehicle volume, major street (average hour)	480	662	138\%	77\%	YES	YES
2. Delay to cross traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	46	93\%		NO	NO

Justification No. 7-2037 Total Traffic

Highway 115 NB Ramp \& Syer Line / County Road 1(

Justification	Description		Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
		Rest. Flow	Numerical	\%			
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches (average hour)	480	937	195\%	80\%	YES	YES
	B. Vehicle volume, along minor streets (average hour)	120	115	96\%		NO	NO
	A. Vehicle volume, major street (average hour)	480	793	165\%	121\%	YES	YES
2. Delay to cross traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	72	145\%		YES	YES

Justification No. 7-2027 Background Traffic

Syer Line / Street A

Justification	Description		Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
		Rest. Flow	Numerical	\%			
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches (average hour)	720	70	10\%	5\%	NO	NO
	B. Vehicle volume, along minor streets (average hour)	255	20	8\%		NO	NO
	A. Vehicle volume, major street (average hour)	720	49	7\%	0\%	NO	NO
2. Delay to cross traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	75	1	1\%		NO	NO

Appendix I-
 Transportation Tomorrow Survey - Excerpt

Residential Distribution
Fri Feb 112022 15:42:07 GMT-0500 (Eastern Standard Time) - Run Time: 2702ms
Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Planning district of origin - pd_orig
Column: Planning district of destination - pd_dest
Filters:
(Planning district of destination - pd_dest In 104); and
(Start time of trip - start_time In 700 - 900); and
(Trip purpose of destination - purp_dest In W, R)
Trip 2016
ROW : pd_orig
COLUMN : pd_dest

Cross Tabulation Query Form - Trip - 2016 v1.1

Filter Variables

Group Attributes

Row Grouping	Column Grouping

Grouping file:Choose File No file chosen

Filter Selection +

Output

Comma-delimited table \bigcirc Column format \quad Expansion Factor On \quad Click to Select Load
Execute Query Select All Save As

```
Mon Mar 21 2022 17:47:25 GMT-0400 (Eastern Daylight Time) - Run Time: 2644ms
Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Planning district of origin - pd_orig
Column: Planning district of destination - pd_dest
Filters:
Planning district of destination - pd_dest In 104
and
Start time of trip - start_time In 700 - 900
and
Trip purpose of destination - purp_dest In W, R
Trip 2016
Table:
,Cavan Monaghan
Ajax,11
Oshawa,26
Clarington,63
Kawartha Lakes,260
Peterborough,669
Cavan Monaghan,204
Otonabee-South Monaghan,128
Asphodel-Norwood,5
Dummer-Douro,40
Selwyn,95
```

Employment Distribution
Tue Feb 152022 16:33:06 GMT-0500 (Eastern Standard Time) - Run Time: 2537ms
Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Planning district of destination - pd_dest
Column: Planning district of origin - pd_orig
Filters:
(Planning district of origin - pd_orig In 104,); and
(Start time of trip - start_time In 700-900); and
(Trip purpose of destination - purp_dest In W, R)
Trip 2016
ROW : pd_dest
COLUMN : pd_orig

TTS Cross Tabulation

Cross Tabulation Query Form - Trip - 2016 v1.1

Filter Variables

Group Attributes

Row Grouping	Column Grouping
Grouping file:Choose File	No file chosen

Filter Selection +

Output

Comma-delimited table Column format Expansion Factor On \quad Click to Select Load
Execute Query Select All Save As

```
Mon Mar 21 2022 17:50:10 GMT-0400 (Eastern Daylight Time) - Run Time: 2479ms
Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Planning district of destination - pd_dest
Column: Planning district of origin - pd_orig
Filters:
Planning district of origin - pd_orig In 104
and
Start time of trip - start_time In 700 - 900
and
Trip purpose of destination - purp_dest In W, R
Trip 2016
Table:
,Cavan Monaghan
PD 1 of Toronto,35
PD 16 of Toronto,37
Ajax,26
Whitby,27
Oshawa,36
Clarington,152
Whitchurch-Stouffville, 39
Mississauga,39
Kawartha Lakes,41
Peterborough,1122
Cavan Monaghan,204
Otonabee-South Monaghan,20
Asphodel-Norwood,11
Selwyn,39
Hastings,45
External,5
```


[^0]: ${ }^{1}$ The traffic assignment was determined by taking the difference of the background (2025 \& 2030) traffic volumes and the existing (2021) traffic volumes with a background traffic growth rate applied to determine the equivalent 2025 and 2030 traffic volumes. To determine the 2027 traffic volumes, we have assumed linear growth based on the background (2025 \& 2030) traffic volumes.

[^1]: ${ }^{2}$ Adjacent development in the Bromont TIS includes the Towerhill Developments Phase 2, the Vargas Development and other minor development in the Millbrook community.

