Traffic Impact Study

Kawartha Downs Development, Township of Cavan Monaghan, County of Peterborough
D.M. Wills Project Number 85152

D.M. Wills Associates Limited
Partners in Engineering, Planning and Environmental Services
Peterborough

November 2021

Summary of Revisions

Revision No.	Revision Title	Date of Release	Summary of Revisions
1	Final Report	November 23, 2021	Final Report Submitted

This report has been formatted considering the requirements of the Accessibility for Ontarians with Disabilities Act.

Executive Summary

D.M. Wills Associates Limited (Wills) has been retained to investigate the impact of a proposed redevelopment of Kawartha Downs on the traffic operation in the area. Kawartha Downs (the development) is located at 1490 County Road 28 \& 1683 Moore Drive, Fraserville, Ontario. The land is to the south of Ontario Highway 115 and on the west side of Peterborough County Road 28 (CR 28).

As proposed in the draft conceptual plan, the proposed development include two components; residential and recreational developments. The residential development is proposed to include 123 single detached dwellings, 272 semidetached dwellings, and 193 townhouses. Most of these dwellings will have an access to Moore Drive and only 42 single detached dwellings will have a direct access to CR 28 . For the recreational development, the existing racetrack and horse barns will remain the same but the oval infield will include an outdoor amphitheater and four soccer fields. The casino will remain the same with the addition of a multi-use event center, hotel, and a tractor pull. The recreational development has two existing entrances/exits on CR 28 and the development does not have any access to Syer Line. The study area includes the intersections of CR 28 and Moore Drive and CR 28 and Syer Line. Also, the study area includes two entrances of the recreational component on CR 28 and an entrance to the 42 dwelling units residential component.

A traffic operation analysis has been conducted using Synchro 9.0 to investigate the impact of the traffic generated from the proposed development on the study area. This analysis is split into two main parts, namely, the background traffic conditions and the traffic condition with the consideration of the development impact. The analysis has covered the AM and PM peaks, as well as the current (i.e. 2021) and horizon years (i.e. 2026 and 2031) scenarios. Also, a scenario for a sold-out event in the outdoor amphitheater was investigated. The study also investigated the need for auxiliary lanes and traffic signals at the intersections and entrances within the study area.

The results of this study can be summarized in the following points:

- Regardless of the development impact
- At CR 28 intersection with Moore Drive, a left turn lane for the northbound traffic and a right turn taper for the southbound traffic are needed.
- It is known to our team that an extension of the existing left turn lane at Whitfield Road is needed based on the existing traffic at this intersection.
- With the consideration of the development impact
- At the intersection of CR 28 and Moore Drive, a full-width right turn lane for the southbound traffic is needed in addition to a left turn lane for the northbound traffic.
- At the intersection of CR 28 and Moore Drive, it is recommended to consider the installation of a traffic signal at this intersection; however, a traffic signal is not fully warranted. The reason behind recommending a
traffic signal is the substantially low LOS and high v/c ratio on Moore Drive after the full operation of the development.
- At the secondary entrance of the recreational development, a full-width right turn lane for the southbound traffic and a left turn lane for the left turn traffic are needed.
- At the main entrance of the recreational development, a traffic signal is warranted.

Table of Contents

1.0 Introduction and Background 8
2.0 Background Traffic Analysis 8
2.1 Roadway Existing Conditions 8
2.2 Existing and Future Background Traffic Conditions. 9
2.3 Existing and Future Background Traffic Operation 10
3.0 Auxiliary Lanes Warrant Analyses based on the Background Traffic Condition 11
4.0 Traffic Operation Conditions with the Development Consideration 12
4.1 Trip Generation 12
4.1.1 Trip Generation for the Residential Component 12
4.1.2 Trip Generation for the Recreational Component during PM Peak Hours 13
4.1.3 Trip Generation for the Outdoor Amphitheatre. 14
4.2 Trip Distribution 15
4.2.1 Trip Distribution for the Residential Component during PM Peak Hours 15
4.2.2 Trip Distribution for the Recreational Component during PM Peak Hours. 16
4.3 Trip Assignment 17
4.3.1 Trip Assignment during the peak hours 17
4.3.2 Trip Assignment during a Sold-out Event for the Outdoor Amphitheatre 18
4.4 Existing and Future Traffic Operation with the Subdivision Consideration 20
5.0 Auxiliary Lanes with the Consideration of the Proposed Developments 21
5.1 The Intersection of CR 28 and Moore Drive 22
5.2 The Intersection of CR 28 and Residential Component Entrance 22
5.3 The Intersection of CR 28 and the Secondary Entrance of the Recreational Component 22
5.4 The Intersection of CR 28 and the Main Entrance of the Recreational Component 23
6.0 Traffic Signal Warrant Analyses with the Developments Impact Consideration 23
6.1 The Intersection of CR 28 and Moore Drive 23
6.2 The Intersection of CR 28 and Residential Component Entrance 24
6.3 The Intersection of CR 28 and Recreational Component Secondary Entrance 256.3.1 Traffic Signal Warrant Analysis for the Secondary Entrance during the PMPeak Hour25
6.3.2 Traffic Signal Warrant Analysis for the Secondary Entrance during a Sold-out Event 26
6.4 The Intersection of CR 28 and Recreational Component Main Entrance 27

6.4.1 Traffic Signal Warrant Analysis for the Main Entrance during the PM Peak Hour
27
6.4.2 Traffic Signal Warrant Analysis for the Main Entrance during a Sold-out Event 28
7.0 Conclusions and Recommendations 28

List of Tables

Table 1 - Traffic Volumes at CR 28 \& Moore Drive Intersection 9
Table 2 - Traffic Volumes at CR 28 \& Syer Line Intersection 9
Table 3 - Traffic Operation Measures at CR 28 and Moore Drive Intersection based on the Total Background Traffic 10
Table 4 - Traffic Operation Measures at CR 28 and Syer Line Intersection based on the Total Background Traffic 10
Table 5 - Left Turning Volume Calculations for CR 28 and Moore Drive Intersection 11
Table 6 - Left Turning Volume Calculations for CR 28 and Syer Line Intersection 12
Table 7 - Trip Generation Rates during AM and PM Peak Hours for the Residential Component 12
Table 8 - The Estimated Entering and Exiting Trips during AM and PM Peak Hours for the Residential Component 13
Table 9 - Trip Generation Rates during AM and PM Peak Hours for the Recreational Component 13
Table 10 - The Estimated Entering and Exiting Trips during AM and PM Peak Hours for the Recreational Component 14
Table 11 - Trip Distribution Ratios on CR 28 for the Residential Component 15
Table 12 - The Turning Movement Volumes Added to the Intersection of CR 28 and Moore Drive 16
Table 13 - The Turning Movement Volumes Added to CR 28 at the Entrance of the Residential Component 16
Table 14 - Trip Distribution Ratios on CR 28 for the Recreational Component 16
Table 15 - The Turning Movement Volumes Added to CR 28 at the Main Entrance of the Recreational Component 16
Table 16 - The Turning Movement Volumes Added to CR 28 at the Secondary Entrance of the Recreational Component 17
Table 17 - The Turning Movements at the Intersection of CR 28 and Moore Drive 17
Table 18 - The Turning Movements at the Residential Component Entrance on CR 28 17
Table 19 - The Turning Movements at the Secondary Entrance of the Recreational Component on CR 28 18
Table 20 - The Turning Movements at the Main Entrance of the Recreational Component on CR 28 18
Table 21 - The Turning Movements at the Intersection of CR 28 and Syer Line 18
Traffic Impact Study
Kawartha Downs Development - Township of Cavan Monaghan
Table 22 The Turning Movements at the Main Entrance of the Recreational Component during Spectators Arrival Peak 19
Table 23 The Turning Movements at the Secondary Entrance of the Recreational Component during Spectators Arrival Peak 19
Table 24 The Turning Movements at the Main Entrance of the Recreational Component After the End of a Sold-out Event 19
Table 25 The Turning Movements at the Secondary Entrance of the Recreational Component After the End of a Sold-out Event 19
Table 26 - Traffic Operation Measures at CR 28 \& Moore Drive Intersection based on the Future Traffic Condition with the Consideration of the Developments 20
Table 27 - Traffic Operation Measures at CR 28 \& Syer Line Intersection based on the Future Traffic Condition with the Consideration of the Developments 21
Table 28 - Left Turning Volume Calculations for Residential Component entrance on CR 28 22
Table 29 - Left Turning Volume Calculations for Recreational Component Secondary Entrance on CR 28 23
Table 30 - AHV based on Peak Hours for CR 28 and Moore Drive Intersection 24
Table 31 - Traffic Signal Warrant Calculations for CR 28 and Moore Drive Intersection 24
Table 32 - AHV based on Peak Hours for CR 28 and the Entrance of the Residential Component 25
Table 33 - Traffic Signal Warrant Calculations for CR 28 and Moore Drive Intersection 25
Table 34 - AHV based on the PM Peak Hour at the Secondary Entrance of the Recreational Component 25
Table 35 - Traffic Signal Warrant Calculations for the Secondary Entrance CR 28 and Moore Drive Intersection 26
Table 36 - AHV based on the PM Peak Hour at the Secondary Entrance of the Recreational Component After the End of the Sold-out Event 26
Table 37 - Traffic Signal Warrant Calculations for the Secondary Entrance of the Recreational Component after the End of the Sold-out Event 27
Table 38 - AHV based on the PM Peak Hour at the Main Entrance of the Recreational Component 27
Table 39 - Traffic Signal Warrant Calculations for the Main Entrance of the Recreational Development on CR 28 27

Appendices

Appendix A - Location Plan
Appendix B - Draft Plan of Kawartha Downs Redevelopment
Appendix C - Traffic Data within the Study Area
Appendix D - Level of Service Criteria for Unsignalized Intersections
Appendix E - Synchro Reports for the Background Traffic Conditions
Appendix F - Auxiliary Lanes Analysis
Appendix G - Synchro Reports for the Traffic Conditions with the Development

1.0 Introduction and Background

D.M. Wills Associates Limited (Wills) was retained by RIC (Moore Drive) Inc. and RIC (Highway 28) Inc. to undertake a Traffic Impact Study (TIS) to assess the impact of the Kawartha Downs Redevelopment located at 1490 County Road 28 \& 1683 Moore Drive, Fraserville, Ontario on the traffic operation in the area.

The purpose of this TIS Report is to assess the impact of the proposed developments on traffic operations of the adjacent roads for both current and future conditions. Also, this study examines the need for auxiliary lanes at the entrances of the developments on Peterborough County Road 28 (CR 28) and at the intersection of CR 28 and Moore Drive. Moreover, traffic signal warrant analyses are conducted for each entrance and for the intersection of CR 28 and Moore Drive. This study will assess the Level of Service (LOS) at the intersections of CR 28 with Moore Drive and Syer Line for both current and future conditions. Therefore, the study area is defined here as the entrances of the developments on CR 28 and the intersections of CR 28 with Moore Drive and Syer Line. Parts of the subject lands where the developments are planned are currently vacant, while the other parts are currently developed with recreational uses including a casino, racetracks, horse barns, and event staging area. The proposed developments are located to the west of CR 28 and Moore Drive is located on the north boundary of the land, while Syer Line is located on the south boundary. The lands surrounding the proposed developments are a mix of farmlands with rural-style residential homes and undeveloped lands. An aerial photo sketching an approximate location plan of the lands is included in Appendix A.

The proposed developments include two component; residential and recreational developments. The residential development is proposed to include 123 single detached dwellings, 272 semidetached dwellings, and 193 townhouses. Most of these dwellings will have an access to Moore Drive and only 42 single detached dwellings will have a direct access to CR 28 as shown in Appendix B. For the recreational development, the existing racetrack and horse barns will remain the same but the oval infield will include an outdoor amphitheater and four soccer fields. The casino will remain the same with the addition of a multi-use event center, hotel, and a tractor pull as shown in Appendix B. The recreational development has two existing entrances/exits on CR 28 and the development does not have any access to Syer Line.

2.0 Background Traffic Analysis

2.1 Roadway Existing Conditions

Within the study area, CR 28 has a two-way two-lane cross-section. Both sides of CR 28 have double solid yellow line, solid white markings, unpaved shoulders, and ditches. At the intersection of CR 28 and the main entrance/exit of the recreational development, the exit direction is controlled with a stop sign. There are a right turn lane for the southbound direction and left turn lane for the northbound direction at the main
entrance of the recreational development. The speed limit on CR 28 within the study area is $80 \mathrm{~km} / \mathrm{hr}$.

Moore Drive within the study area has a two-way two-lane rural cross-section with unpaved shoulders and ditches and no pavement marking. Moore Drive intersects CR 28 in a T-intersection with a stop sign on Moore Drive.

2.2 Existing and Future Background Traffic Conditions

This study uses the traffic counts that were collected on July 7, 2021, at the intersections of CR 28 with Moore Drive and Syer Line and were considered to represent current site conditions on a typical weekday. The traffic counts conducted at this intersection are included in Appendix C. Based on the traffic counts at the intersection of CR 28 and Moore Drive, the AM peak hour is identified between 7:00 am and 8:00 am, while the PM peak hour occurs between 3:30 pm and 4:30 pm. On the other hand, the AM and PM peak hours at the intersection of CR 28 and Syer Line occur between 7:30 and 8:30 am, and $4: 30 \mathrm{pm}$ and 5:30 pm, respectively. Since there are differences between the peak hours and to ensure investigating the peak hours at both intersection, each intersection will be modelled separately. However, the trips generated from the developments will be distributed on both intersections during the above mentioned peak periods. Also, when the traffic counts were collected on July 7, 2021, the horse racetrack and casino were not open to public yet due to the provincial COVID19 restrictions.

To obtain traffic volumes for the horizon years 2026 and 2031, the future traffic counts were estimated using an annual growth rate of 2.0%. The traffic volumes in the current year and the horizon years (i.e. 2026 and 2031) are summarized in Table 1 and Table 2.

Table 1-Traffic Volumes at CR 28 \& Moore Drive Intersection

	EBL	EBR	NBL	NBT	SBT	SBR
AM Peak Hour						
$\mathbf{2 0 2 1}$	17	20	14	418	343	9
$\mathbf{2 0 2 6}$	19	22	15	462	379	10
$\mathbf{2 0 3 1}$	21	24	17	510	418	11
PM Peak Hour						
$\mathbf{2 0 2 1}$	17	22	12	323	440	20
$\mathbf{2 0 2 6}$	19	24	13	357	486	22
$\mathbf{2 0 3 1}$	21	27	15	394	536	24

Table 2 - Traffic Volumes at CR 28 \& Syer Line Intersection

	EBL	EBR	NBL	NBT	SBT	SBR
AM Peak Hour						
$\mathbf{2 0 2 1}$	9	9	5	379	303	4
$\mathbf{2 0 2 6}$	10	10	6	418	335	4
$\mathbf{2 0 3 1}$	11	11	6	462	369	5
PM Peak Hour						
$\mathbf{2 0 2 1}$	9	6	8	422	467	9

$\mathbf{2 0 2 6}$	10	7	9	466	516	10
$\mathbf{2 0 3 1}$	11	7	10	514	569	11

It is worth noting that no pedestrian movements were observed during the peak hours at both intersections except during the AM peak at CR 28 and Syer Line when only 2 pedestrians were observed. Accordingly and based on the nature of the development and the study area, this study assumes that pedestrians do not have any adverse effect on traffic operations in the study area.

2.3 Existing and Future Background Traffic Operation

Synchro 9 software was used to review the existing and future traffic operation at the CR 28 and Moore Drive and CR 28 and Syer Line intersections without the development. Traffic operations were investigated for the existing conditions of 2021, and the horizon years 2026 and 2031. The Level of Service (LOS) and volume to capacity (v/c) ratio results of the existing and future scenarios without the developments impact (i.e. background traffic volumes) are shown in Table 3 and Table 4. More details about the LOS definition and Synchro models results for these scenarios are presented in Appendix D and Appendix E, respectively.

As shown in the tables, all the approaches maintain the same LOSs over the study period except for the AM peak hour in 2031. The LOSs during the AM peak hour in 2031 drop slightly from "C" to "D" for Moore Drive and from "B" to "C" for Syer Line. Despite these drops in the LOSs, the v/c ratios remain significantly low, which implies a smooth traffic operation on both side roads (i.e. Moore Drive and Syer Line).

Table 3 - Traffic Operation Measures at CR 28 and Moore Drive Intersection based on the Total Background Traffic

	EB	NBL	SB
AM Peak Hour			
$\mathbf{2 0 2 1}$	0.231	(C)	0.02 (A)
$\mathbf{2 0 2 6}$	0.296 (C)	0.022 (A)	-
$\mathbf{2 0 3 1}$	0.384 (D)	0.027 (A)	-
PM Peak Hour			
$\mathbf{2 0 2 1}$	$0.136 ~(C)$	0.014 (A)	-
$\mathbf{2 0 2 6}$	0.169 (C)	0.016 (A)	-
$\mathbf{2 0 3 1}$	0.216 (C)	0.02 (A)	-

* LOS (v/c ratio)

Table 4 - Traffic Operation Measures at CR 28 and Syer Line Intersection based on the Total Background Traffic

	EB	NBL	SB
AM Peak Hour			
$\mathbf{2 0 2 1}$	0.07 (B)	0.005 (A)	-
$\mathbf{2 0 2 6}$	0.085 (B)	0.006 (A)	-
$\mathbf{2 0 3 1}$	0.104 (C)	0.006 (A)	-
PM Peak Hour			
$\mathbf{2 0 2 1}$	0.073 (C)	0.009 (A)	-
$\mathbf{2 0 2 6}$	0.094 (C)	0.01 (A)	-
$\mathbf{2 0 3 1}$	0.117 (C)	0.012 (A)	-

3.0 Auxiliary Lanes Warrant Analyses based on the Background Traffic Condition

The warrants for auxiliary lanes were examined on CR 28 at the intersection of CR 28 and Moore Drive in accordance with Appendix 9A of MTO's Design Supplement for the 2017 Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads ${ }^{1}$.

The need for a left-turn lane at an unsignalized intersection (i.e. at the intersection of CR 28 and Syer Line) as established by the Design Supplement, Chapter 9A is based on the advancing traffic volume $\left(V_{A}\right)$, the opposing traffic volume (V_{0}), the left-turning traffic volume (V_{L}), and the percentage of left-turning traffic in the advancing volume (LT\%). As shown in Table 5 for CR 28 intersection with Moore Drive, although the left turning traffic volume is relatively low, it triggers the need for a left turn lane on CR 28 for the northbound direction as shown in Appendix F. It is worth mentioning that the warrant is applied only for the PM peak hour since the percentage of the left turning volume is close to 5%, unlike the AM peak hour where the percentage is around 3%.

Table 5 - Left Turning Volume Calculations for CR 28 and Moore Drive Intersection

	V L $^{\prime}$	V $_{\mathbf{A}}$	LT\%	V $_{\mathbf{o}}$
AM Peak				
$\mathbf{2 0 2 1}$	14	432	3%	352
$\mathbf{2 0 2 6}$	15	477	3%	389
$\mathbf{2 0 3 1}$	17	527	3%	429
PM Peak				
$\mathbf{2 0 2 1}$	12	335	4%	460
$\mathbf{2 0 2 6}$	13	370	4%	508
$\mathbf{2 0 3 1}$	15	408	$\mathbf{4 \%}$	561

For the right-turn lane warrant analysis at the entrance of the development, the TAC Manual specifies that right-turn lanes should be considered "when the volume of decelerating or accelerating vehicles compared with through traffic volumes causes undue hazard." According to the County of Peterborough guidelines, a turn lane or taper may be required based on the Virginia Department of Transportation (VDOT) warrant criteria. The right turning traffic volumes anticipated for the southbound direction are ranging from 9 during the AM peak hour in 2021 to 24 veh/hr during the PM peak in 2031 as shown in Table 1. Based on PM peak hour volumes, a right turn taper is warranted as shown in Appendix F.

For Syer Line, Table 6 summarizes the left turn lane warrant calculations. As shown in the table, the percentages of the left turning volumes to the advanced volumes are

[^0]significantly low and far from 5%, and hence, a left turn lane is not warranted at the intersection of CR 28 and Syer Line.

For the right turn lane and according to the County of Peterborough guidelines, a right turn taper is not warranted since the right turning volumes on the southbound direction are less than 20 veh/hour for the current and future scenarios.

Table 6 - Left Turning Volume Calculations for CR 28 and Syer Line Intersection

	V $_{\mathbf{L}}$	V $_{\text {A }}$	LT\%	V $_{\mathbf{O}}$
AM Peak				
$\mathbf{2 0 2 1}$	5	384	1%	307
$\mathbf{2 0 2 6}$	6	424	1%	339
$\mathbf{2 0 3 1}$	6	468	1%	374
PM Peak				
$\mathbf{2 0 2 1}$	8	430	2%	476
$\mathbf{2 0 2 6}$	9	475	2%	526
$\mathbf{2 0 3 1}$	$\mathbf{1 0}$	524	$\mathbf{2} \%$	580

4.0 Traffic Operation Conditions with the Development Consideration

4.1 Trip Generation

4.1.1 Trip Generation for the Residential Component

Estimation of trips generated by the proposed development was derived from the Trip Generation Manual, $8^{\text {th }}$ Edition², published by the Institute of Transportation Engineers (ITE). The ITE codes of the land uses, which describe the dwelling units types, and the corresponding trip generation rates are shown in Table 7. Also, the table shows the average trip generation rates for each housing type for both the AM and the PM peaks and the percentages of entering and exiting.

The residential component of this development has three types of dwelling units; namely, single detached, semi-detached dwelling units, and townhouses. Since the ITE Manual does not include a land use for the semi-detached units, it is assumed that both the single detached and the semi-detached will have the same trip generation rates.

Table 7 - Trip Generation Rates during AM and PM Peak Hours for the Residential Component

Land Use	ITE	AM Peak			PM Peak		
	Code	Avg. Rate	Entering	Exiting	Avg. Rate	Entering	Exiting
Single/semi-detached dwelling unit	$\mathbf{2 1 0}$	0.75	25%	75%	1.01	63%	37%
Townhouses	$\mathbf{2 3 0}$	0.44	17%	83%	0.52	67%	33%

[^1]The average trip generation rates provided by the ITE Manual for the peak hours of the adjacent street were used. The results summary of the new trips generated (rounded) is presented in Table 8. The trips were estimated based on the proposed number of dwelling units that are shown on the site plan in Appendix B. According to this draft plan, the residential component is split into two parts. The first part has a direct access to Moore Drive and it consists of 82 single detached, 272 semi detached dwelling units, and 193 townhouses. The other part has a direct access to CR 28 and it consists of 42 single detached dwelling units as shown in Table 8.

Table 8 - The Estimated Entering and Exiting Trips during AM and PM Peak Hours for the Residential Component

Land Use	Number of Units	AM Peak			PM Peak		
		Avg. Rate	Entering	Exiting	Avg. Rate	Entering	Exiting
First part of residential component with direct access to Moore Drive							
Single detached dwelling unit	81	61	15	46	82	52	30
Semi-detached dwelling unit	272	204	51	153	275	173	102
Townhouses	193	85	14	70	100	67	33
Total		350	81	269	457	292	165
Second part of residential component with direct access to CR 28							
Single detached dwelling unit	42	32	8	24	42	27	16
Total		32	8	24	42	27	16

4.1.2 Trip Generation for the Recreational Component during PM Peak Hours

Again, the ITE Trip Generation Manual is used to estimate the trips generated by the proposed development. The ITE codes of the land uses that best describe the proposed and the existing uses within the recreational component of the development and the corresponding trip generation rates are shown in Table 9. Also, the table shows the average trip generation rates for each land use for both the AM and the PM peaks and the percentages of entering and exiting. As mentioned before, since the Casino and the racetrack were closed to public during the traffic count, the trip generation for these activities will be considered in the calculations as shown in the table.

Table 9 - Trip Generation Rates during AM and PM Peak Hours for the Recreational Component

Land Use	ITE	AM Peak			PM Peak		
	Code	Avg. Rate	Entering	Exiting	Avg. Rate	Entering	Exiting
Hotel	$\mathbf{3 1 0}$	0.52	55%	45%	0.61	58%	42%
Existing Casino	$\mathbf{4 7 3}$	0	0%	0%	13.43	56%	44%
Multi-use Event Centre	$\mathbf{4 3 5}$	0	0%	0%	3.58	55%	45%
Soccer Field	$\mathbf{4 8 8}$	1.4	50%	50%	20.67	69%	31%
Existing Horse Racetrack	$\mathbf{4 5 2}$	0.01	91%	9%	0.22	91%	9%
Existing Event Stage	$\mathbf{4 4 1}$	0	0	0	0.02	50%	50%
Outdoor Amphitheater	$\mathbf{4 4 1}$	0	0	0	0.02	50%	50%

The peak hour of the adjacent street for these uses are used except for the Hotel and Horse Racetrack where the peak hour rates of the generator are used since it is assumed that the peak hour of the generators will coincide with the peak hour of the adjacent
street. As noticed from the table, most of the land uses attractions are during the PM peak hour except the Hotel and the soccer field. However, the soccer filed trip generation rate during the AM peak will significantly low. For the multi-use event centre, the closest land use in the ITE Manual is selected to be multipurpose recreational facility because the event centre will include indoor field, public spaces, WCs, etc. as indicated in the site plan in Appendix \mathbf{B}.

Also, based on discussions with the client, these land uses will not all operate concurrently. For example, the horse racetrack will not operate simultaneously when the outdoor amphitheater or the existing event stage or the soccer field are used. Therefore, a worstcase scenario is assumed for the analysis in this section. The scenario assumes that the hotel, horse racetrack, and the casino are going to operate at the same time and the PM peak hour of these uses will be the same as the peak hour of the adjacent street. Since the outdoor amphitheater is the biggest trip attraction in this development and the peak hour of the amphitheater will not coincide with the PM peak hour of the adjacent street, a closer look at the amphitheater trip generation will be discussed later in this report.

Table 10 - The Estimated Entering and Exiting Trips during AM and PM Peak Hours for the Recreational Component

Land Use	Size	AM Peak				PM Peak										
		Entering	Exiting	Avg. Rate	Entering	Exiting										
First part of residential component with direct access to Moore Drive																
Hotel (rooms)		220	114	63	51	134	78	56								
Existing Casino (GFA - ft ${ }^{2}$)	50000	0	0	0	672	376	295									
Horse Racetrack (spectators)	2000	20	18	2	440	400	40									
Total										134	81	53	1026	654	372	

Table 10 shows the estimated trips generated by the three uses as part of the worst-case scenario for the peak hour. The generated trips will have a direct access to CR 28 through two entrances; one main entrance and another secondary entrance and as discussed with the client, there is no access from the development to Syer Line.

4.1.3 Trip Generation for the Outdoor Amphitheatre

According to the details in the proposed site plan, it is anticipated that the amphitheatre will have 5,000 raked seats in addition to 10,000 lawn seating capacity. The total maximum capacity for a sold-out event will be 15,000 attendees.

The ITE Manual does not have any similar land use that could be adopted here for the proposed outdoor amphitheatre. Therefore, three similar studies carried out in Florida, Tennessee and New York, US ${ }^{3}$ for theaters and amphitheatre are explored to estimate the trip generation for this use. The assumed vehicle occupancy rate in these studies

[^2]ranges from 1.5 to 3.1 passenger/vehicle. Based on the characteristics of the area around Kawartha Downs and being in suburban context, it is assumed that the vehicle occupancy will be 2.8 passenger/vehicle as an intermediate value between the assumptions in previous studies. Also, these studies assume a temporal arrival distribution to the event with a maximum arrival percentage of $60-70 \%$ of the total anticipated trips. For this study, it is assumed an average of 65% of the total anticipated trips will arrive during the maximum arrival hour just before the event starts. Assuming the event will start at $8 \mathrm{pm}, 65 \%$ of the trips will arrive between 7 pm and 8 pm . The rest of the trips will arrive during the hour when the event starts (10% will arrive between 8 pm and 9 pm) and 25% will arrive between 6 pm and 7 pm . Since this recreational component has two entrances, it is assumed that 70% of the traffic will use the main entrance while the remaining 30% will use the secondary entrance. Finally, it is assumed that 95% of the trips will be coming to the amphitheatre using automobile, unlike other studies which assume high percentages for buses and other modes of travel to be used for transportation to the site. Also, it is assumed that the hotel will not generate considerable trips during the a sold-out event being held in the amphitheatre when compared to the trip generated by the amphitheater. Moreover, there is no reduction applied to the trips generated by the amphitheatre due to the internal trips between the amphitheater and the hotel.

Based on this discussion, a total of 3,308 vehicle/hour is anticipated to arrive to the site during the peak arrival hour. This is calculated as follow 15,000 (total attendees)*0.95 (automobile usage)*. 65 (maximum arrival percentage)/2.8 (vehicle occupancy rate). As discussed, 2,316 vehicle/hour (70% of the traffic) will use the main entrance (for entering and exiting), while the remaining 992 vehicle/hour (30% of the traffic) will use the secondary entrance (for entering and exiting).

4.2 Trip Distribution

4.2.1 Trip Distribution for the Residential Component during PM Peak Hours

Based on the existing turning movements ratios, the trips generated from the development are distributed as shown in Table 11. For the residential component, the trip distribution ratios are estimated based on the actual traffic counts at CR 28 and Moore Drive.

Table 11 - Trip Distribution Ratios on CR 28 for the Residential Component

CR 28 at Moore Drive	AM		PM	
	Volume	Ratio	Volume	Ratio
Northbound through traffic	418	0.549	323	0.423
Southbound through traffic	343	0.451	440	0.577
CR 28 at Residential Entrance	AM		PM	
	Volume	Ratio	Volume	Ratio
Northbound through traffic	432	0.543	335	0.420
Southbound through traffic	363	0.457	462	0.580

Based on the ratios in Table 11, the number of trips generated by the development shown in Table 8, the trip distribution on the turning movements of CR 28 and Moore Drive intersection due to the residential component is presented in Table 12.

Table 12 - The Turning Movement Volumes Added to the Intersection of CR 28 and Moore Drive

Peak Hour	EBL	EBR	NBL	NBT	SBT	SBR
AM	148	121	44	0	0	36
PM	70	95	124	0	0	168

Similarly, the turning movements at the entrance of the residential part that has direct access to CR 28 are shown in Table 13.

Table 13 - The Turning Movement Volumes Added to CR 28 at the Entrance of the Residential Component

Peak Hour	EBL	EBR	NBL	NBT	SBT	SBR
AM	13	11	4	0	0	4
PM	7	9	11	0	0	15

4.2.2 Trip Distribution for the Recreational Component during PM Peak Hours

Based on the existing turning movements ratios, the trips generated from the development are distributed as shown in Table 14. For the recreational component, the trip distribution ratios are estimated based on the actual traffic counts at CR 28 and Syer Line intersection.

Table 14 - Trip Distribution Ratios on CR 28 for the Recreational Component

CR 28 at Syer Line	AM		PM	
	Volume	Ratio	Volume	Ratio
Southbound Left Traffic	388	0.558	323	0.423
Southbound Right Traffic	307	0.442	440	0.577

Since the recreational development has two entrances, it is assumed for this scenario that a portion (50\%) of the trips generated by the horse racetrack will use the secondary entrance. However, the trips generated from the casino and the hotel will use the main entrance only. Accordingly and based on the ratios in Table 14, the number of trips generated by the recreational development shown in Table 10 will be distributed on the turning movements at the main and secondary entrance of the recreational development is presented in Table 15 and Table 16.

Table 15 - The Turning Movement Volumes Added to CR 28 at the Main Entrance of the Recreational Component

Peak Hour	EBL	EBR	NBL	NBT	SBT	SBR
AM	30	24	45	0	0	36
PM	157	214	277	0	0	377

Table 16 - The Turning Movement Volumes Added to CR 28 at the Secondary Entrance of the Recreational Component

Peak Hour	EBL	EBR	NBL	NBT	SBT	SBR
AM	1	1	10	0	0	8
PM	8	11	85	0	0	115

It is worth mentioning that it is assumed that the trip generated from both development components (i.e. residential and recreational) will not increase over the horizon years since there is no expansion anticipated within the development.

4.3 Trip Assignment

4.3.1 Trip Assignment during the peak hours

The trip distributed at each access point to the development will impact the traffic on the other access point. This means, for example, that the traffic exiting the recreational component and turning left into CR 28 will increase the traffic volumes on CR 28 intersection with Moore Drive and similarly for the other access points. The total traffic volumes with the consideration of both development components at each access point are presented in Tables 17-21. It is worth mentioning that the volumes in Table 17 and Table 18 are based on the background traffic at CR 28 and Moore Drive, while the volumes in Table 19, Table 20, and Table 21 are based on the background traffic at CR 28 and Syer Line. This was assumed based on the proximity of the entrances to the intersections.

Table 17-The Turning Movements at the Intersection of CR 28 and Moore Drive

	EBL	EBR	NBL	NBT	SBT	SBR	
AM Peak Hour							
$\mathbf{2 0 2 1}$	165	141	61	459	390	45	
$\mathbf{2 0 2 6}$	167	143	63	502	426	46	
$\mathbf{2 0 3 1}$	169	146	64	550	466	47	
PM Peak Hour							
$\mathbf{2 0 2 1}$	87	117	151	480	939	188	
$\mathbf{2 0 2 6}$	89	119	153	513	984	190	
$\mathbf{2 0 3 1}$	91	122	154	550	1035	193	

Table 18 - The Turning Movements at the Residential Component Entrance on CR 28

	EBL	EBR	NBL	NBT	SBT	SBR
AM Peak Hour						
$\mathbf{2 0 2 1}$	13	11	4	507	528	4
$\mathbf{2 0 2 6}$	13	11	4	552	566	4
$\mathbf{2 0 3 1}$	13	11	4	602	608	4
PM Peak Hour						
$\mathbf{2 0 2 1}$	7	9	11	624	1050	15
$\mathbf{2 0 2 6}$	7	9	11	659	1098	15
$\mathbf{2 0 3 1}$	7	9	11	698	1151	15

Table 19 - The Turning Movements at the Secondary Entrance of the Recreational Component on CR 28

	EBL	EBR	NBL	NBT	SBT	SBR	
AM Peak Hour							
$\mathbf{2 0 2 1}$	1	1	10	466	475	8	
$\mathbf{2 0 2 6}$	1	1	10	507	507	8	
$\mathbf{2 0 3 1}$	1	1	10	551	542	8	
PM Peak Hour							
$\mathbf{2 0 2 1}$	8	11	85	723	957	115	
$\mathbf{2 0 2 6}$	8	11	85	768	1007	115	
$\mathbf{2 0 3 1}$	8	11	85	817	1062	115	

Table 20 - The Turning Movements at the Main Entrance of the Recreational Component on CR 28

	EBL	EBR	NBL	NBT	SBT	SBR
AM Peak Hour						
$\mathbf{2 0 2 1}$	9	9	5	483	459	4
$\mathbf{2 0 2 6}$	10	10	6	522	491	4
$\mathbf{2 0 3 1}$	11	11	6	566	526	5
PM Peak Hour						
$\mathbf{2 0 2 1}$	9	6	8	918	787	9
$\mathbf{2 0 2 6}$	10	7	9	962	836	10
$\mathbf{2 0 3 1}$	11	7	10	1011	890	11

Table 21 - The Turning Movements at the Intersection of CR 28 and Syer Line

	EBL	EBR	NBL	NBT	SBT	SBR
AM Peak Hour						
$\mathbf{2 0 2 1}$	9	9	5	483	459	4
$\mathbf{2 0 2 6}$	10	10	6	522	491	4
$\mathbf{2 0 3 1}$	11	11	6	566	526	5
PM Peak Hour						
$\mathbf{2 0 2 1}$	9	6	8	918	787	9
$\mathbf{2 0 2 6}$	10	7	9	962	836	10
$\mathbf{2 0 3 1}$	11	7	10	1011	890	11

4.3.2 Trip Assignment during a Sold-out Event for the Outdoor Amphitheatre

It is assumed that 70% of the inbound traffic for the outdoor amphitheater will be assigned to the main entrance and the rest (30\%) will be assigned for the secondary entrance of the recreational component. Since a sold-out event is assumed to be held after the PM peak hour, the traffic during the off-peak hour is assumed to be equal to the lowest traffic volumes observed during the traffic count collection for this study which is between 1:30 pm and 2:30 pm at CR 28 intersection with Moore Drive as shown in Appendix C. Accordingly, the northbound and southbound traffic at the entrances on CR 28 will be 249 veh/day and 256 veh/day, respectively. This means that the directional split for the off-peak period is almost 50/50.

Based on the temporal distribution of the arrival trips discussed before and the trip distribution, the inbound traffic volumes at the entrances of the recreational component are summarized in Table 22 and Table 23.

Table 22 The Turning Movements at the Main Entrance of the Recreational Component during Spectators Arrival Peak

	EBL	EBR	NBL	NBT	SBT	SBR
Off Peak Hour						
$\mathbf{2 0 2 1}$	0	0	1158	745	256	1158
$\mathbf{2 0 2 6}$	0	0	1158	771	283	1158
$\mathbf{2 0 3 1}$	0	0	1158	800	312	1158

Table 23 The Turning Movements at the Secondary Entrance of the Recreational Component during Spectators Arrival Peak

	EBL	EBR	NBL	NBT	SBT	SBR
Off Peak Hour						
$\mathbf{2 0 2 1}$	0	0	496	249	1414	496
$\mathbf{2 0 2 6}$	0	0	496	275	1441	496
$\mathbf{2 0 3 1}$	0	0	496	304	1470	496

For the outbound traffic, it is anticipated that all the vehicles will leave the venue once the event is done, which is typical for these big events. Accordingly, the total traffic volumes at the entrances at the end of a sold-out event will be 5090 vehicles based on the assumptions discussed before in the trip generation section. This traffic volume will split into 70% and 30% on both exits and it is assumed that the directional distribution at the exit is $50 / 50$. Accordingly, the traffic exiting the main entrance will be 1781 vehicles turning right on CR 28 and 1781 vehicles turning left on CR 28 . Similarly, the secondary entrance will be used by 763 vehicles turning right on CR 28 and 763 vehicles turning left on CR 28. The turning volumes at the entrances are presented in Table 27 and Table 28.

Table 24 The Turning Movements at the Main Entrance of the Recreational Component After the End of a Sold-out Event

	EBL	EBR	NBL	NBT	SBT	SBR
Off Peak Hour						
$\mathbf{2 0 2 1}$	1781	1781	0	249	1019	0
$\mathbf{2 0 2 6}$	1781	1781	0	275	1046	0
$\mathbf{2 0 3 1}$	1781	1781	0	304	1075	0

Table 25 The Turning Movements at the Secondary Entrance of the Recreational Component After the End of a Sold-out Event

	EBL	EBR	NBL	NBT	SBT	SBR
Off Peak Hour						
$\mathbf{2 0 2 1}$	763	763	0	2030	256	0
$\mathbf{2 0 2 6}$	763	763	0	2056	283	0
$\mathbf{2 0 3 1}$	763	763	0	2085	312	0

4.4 Existing and Future Traffic Operation with the Subdivision Consideration

Again, Synchro 9 software was used to model the traffic at the adjacent intersections. The model aims at assessing the traffic operation performance at these locations without any modifications to the existing intersections. Different scenarios with the consideration of the traffic generated from the development were assessed including the current year (2021) and the horizon years (2026 and 2031) for both AM and PM peak hours. The traffic volumes used in this assessment ae summarized in Table 17 and Table 21. The results summary is presented in Table 26 and Table 27. The details of the simulation models and full results can be found in Appendix G. The sold-out event scenario is not modeled since it is not the typical scenario for this development and the traffic operation measures are anticipated to deteriorate significantly in this scenario due to the anticipated traffic volumes.

The traffic operation performance for the background traffic and the traffic with the developments consideration at CR 28 intersection with Moore Drive are compared without any modification to the roadway existing conditions. Accordingly, the LOSs for the AM peak LOSs for CR 28 will remain the same before and after adding the development impact; however, the PM peak LOSs will deteriorate significantly. For Moore Drive, the LOSs are expected to have a huge reduction and a huge raise in v/c ratio.

On the other hand, for Syer Line intersection with CR 28 and based on the assumptions mentioned above, the LOSs on CR 28 will slightly decrease from " A " to " B " after adding the developments impact for the PM peak. For Syer Line, the LOSs will also decrease but the v / c ratios will remain low ($v / c=0.381$ in 2031 scenario) which indicates the traffic will operate at an acceptable level.

Table 26 - Traffic Operation Measures at CR 28 \& Moore Drive Intersection based on the Future Traffic Condition with the Consideration of the Developments

	EB	NBL	SB
AM Peak Hour			
2021	3.243 (F)	0.096 (A)	-
2026	3.896 (F)	0.104 (A)	-
2031	4.863 (F)	0.111 (A)	-
PM Peak Hour			
2021	6.458 (F)	0.399 (C)	-
2026	8.855 (F)	0.428 (C)	-
2031	12.522 (F)	0.46 (C)	-

Table 27 - Traffic Operation Measures at CR 28 \& Syer Line Intersection based on the Future Traffic Condition with the Consideration of the Developments

$|$| | EB | NBL | SB |
| :--- | :---: | :---: | :---: |
| AM Peak Hour | | | |
| $\mathbf{2 0 2 1}$ | 0.1 (C) | 0.006 (A) | - |
| $\mathbf{2 0 2 6}$ | 0.123 (C) | 0.007 (A) | - |
| $\mathbf{2 0 3 1}$ | 0.152 (C) | 0.008 (A) | - |
| PM Peak Hour | | | |
| $\mathbf{2 0 2 1}$ | 0.229 (E) | 0.012 (A) | - |
| $\mathbf{2 0 2 6}$ | 0.297 (F) | 0.014 (B) | - |
| $\mathbf{2 0 3 1}$ | 0.381 (F) | 0.016 (B) | - |

*LOS (v/c ratio)

In summary, the traffic impact of the development on the intersection of CR 28 and Moore Drive is significant and needs mitigation measures to be applied as will be discussed later in this report. Conversely, the developments impact on Syer Line intersection with CR 28 is minimal and most of this minimal impact will be noticed on Syer Line, which is the side road. It is worth mentioning that it is known to our team that the intersection of Whitfield Road and CR 28 needs improvements to enhance the traffic operation at this intersection. Accordingly, these improvements will have an impact on the intersection of CR 28 and Syer Line. Therefore, the intersection of CR 28 and Syer Line should be re-evaluated based on the approved improvements that will be carried out at the intersection of Whitfield Road and CR 28.

5.0 Auxiliary Lanes with the Consideration of the Proposed Developments

The warrants for auxiliary lanes are examined in this section in accordance with Appendix 9A of MTO's Design Supplement for the 2017 Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads ${ }^{4}$. The need for a left-turn lane at an unsignalized intersection as established by the Design Supplement, Chapter 9 A is based on the advancing traffic volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, the opposing traffic volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, the left-turning traffic volume $\left(\mathrm{V}_{\mathrm{L}}\right)$, and the percentage of left-turning traffic in the advancing volume (LT\%).

For the right-turn lane warrant analysis at the entrance of the development, the TAC Manual specifies that right-turn lanes should be considered "when the volume of decelerating or accelerating vehicles compared with through traffic volumes causes undue hazard." According to the County of Peterborough guidelines, a turn lane or taper may be required based on the Virginia Department of Transportation (VDOT) warrant criteria. Since the TAC does not provide a quantitative method to determine the need

[^3]for right-turn lanes, the reliance in this section will be on the County of Peterborough guidelines.

5.1 The Intersection of CR 28 and Moore Drive

This intersection was assessed for the existing conditions and the results revealed that a right turn taper for southbound and a left turn lane for the northbound are needed. Accordingly, these improvements will be needed with the development. Additionally, based on the southbound right turning volumes shown in Table 17 and according to the County's guidelines, a full-width right turn lane will be required.

5.2 The Intersection of CR 28 and Residential Component Entrance

As shown in Table 28, the left-turning volumes are less than 15 vph in all the peak hours for the current and the horizon years. Based on these low volumes, there is no need for a left turning lane at this entrance.

Table 28 - Left Turning Volume Calculations for Residential Component entrance on CR 28

	V $_{\mathbf{L}}$	V $_{\text {A }}$	LT\%	V $_{\mathbf{O}}$
AM Peak				
$\mathbf{2 0 2 1}$	4	511	1%	532
$\mathbf{2 0 2 6}$	4	556	1%	570
$\mathbf{2 0 3 1}$	4	606	1%	611
PM Peak				
$\mathbf{2 0 2 1}$	11	635	2%	1065
$\mathbf{2 0 2 6}$	11	670	2%	1113
$\mathbf{2 0 3 1}$	11	709	2%	1166

Based on the right turning traffic volumes anticipated for the southbound direction (ranging from 4 to 15 veh/hr during the AM and PM peak in 2031 as shown in Table 18), a right turn taper is not warranted since the volumes are less than 20 veh/hr based on the County of Peterborough guidelines.

5.3 The Intersection of CR 28 and the Secondary Entrance of the Recreational Component

Table 29 shows the left-turn lane calculations. For the AM peak, the anticipated percentage of the left turning vehicle is low, while for the PM peak has considerable left turning volumes. Based on these volumes, a left turn lane is required at the secondary entrance of the recreational development.

Based on the County of Peterborough guidelines and the right turning traffic volumes anticipated for the southbound direction during the PM peak (115 veh/hr as shown in Table 19), a full-width right turn lane and a taper are warranted.

Table 29 - Left Turning Volume Calculations for Recreational Component Secondary Entrance on CR 28

	$\mathbf{V}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{A}}$	$\mathbf{L T \%}$	$\mathbf{V}_{\mathbf{o}}$
AM Peak				
$\mathbf{2 0 2 1}$	10	476	2%	483
$\mathbf{2 0 2 6}$	10	517	2%	515
$\mathbf{2 0 3 1}$	10	561	2%	550
PM Peak				
$\mathbf{2 0 2 1}$	85	808	10%	1073
$\mathbf{2 0 2 6}$	85	853	10%	1122
$\mathbf{2 0 3 1}$	85	902	9%	1177

5.4 The Intersection of CR 28 and the Main Entrance of the Recreational Component

The existing condition at the main entrance of the recreational component has already both right turn and left turn lanes. Therefore, the analysis for auxiliary lanes analysis for this entrance is not required; however, a traffic signal warrant analysis is required as will be discussed later.

6.0 Traffic Signal Warrant Analyses with the Developments Impact Consideration

Due to the considerable traffic volumes that will be generated by the developments, traffic signal warrant analyses are carried out to investigate the need for traffic signals at the intersections of CR 28 with Moore Drive, and the main and secondary entrances of the recreational component on CR 28.

According to the Ontario Traffic Manual (OTM) Book 12 - Traffic Signals, the need for a traffic signal for a future scenario will follow Justification 7 - Projected Volumes. This justification assumes two basic scenarios; one of them meets the case of the Study Area, where an intersection already exists and a proposed development or developments will add more traffic to that intersection. Since the future eight-hour volumes with the additional volumes due to the impact of the developments are not available and will not be predicted with sufficient accuracy, the OTM suggested the analysis of the justification using the Peak Hour Volume (PHV) and reduced to the Average Hour Volume (AHV). According to the OTM, the AHV will be calculated as follow:

$$
A H V=\frac{P H V}{2}
$$

Due to the fluctuation of the traffic volumes during the AM and the PM peak hours, the traffic warrants will be carried out for both peak hours to account for the worst case.

6.1 The Intersection of CR 28 and Moore Drive

To investigate the traffic signal warrant, the above equation is applied to the volumes of CR 28 intersection with Moore Drive during both the AM and PM peak hours in 2031,
which are presented in Table 17. Accordingly, the AHVs for this intersection are shown in Table 30.

Table 30 - AHV based on Peak Hours for CR 28 and Moore Drive Intersection

	EBL	EBT	NBL	NBT	SBT	SBR
$\mathbf{2 0 3 1}$ (AM Peak)	84	73	32	275	233	24
$\mathbf{2 0 3 1}$ (PM Peak)	45	61	77	275	517	96

Based on the estimated AHVs, the analysis for Justification 7 was conducted as shown in Table 31. As seen from the compliance percentages, the estimated AHVs are not fulfilling the volume requirements to justify a traffic signal for the worst-case future scenario in 2031.

Table 31 - Traffic Signal Warrant Calculations for CR 28 and Moore Drive Intersection

Justification	Guidance Approach Lanes (2 or more lane)	20\% Threshold Increase as per	Estimated AHV	COMPLIANCE \%
Flow Condifion	Restricted Flow			
AM Peak Hour				
1. Minimum Vehicular Volume	480	576	721	125\%
	120	216*	157	73\%
2. Delay to Cross Traffic	480	576	564	98\%
	50	60	84	140\%
PM Peak Hour				
1. Minimum Vehicular Volume	480	576	1072	186\%
	120	216*	106	49\%
2. Delay to Cross Traffic	480	576	966	168\%
	50	60	45	75\%

* Volume requirements to be increased by 20% for an existing intersection when using the AHV approach as per OTM guidelines.
*Volume requirements to be increased by 50% for a T-intersection.
Based on the OTM procedure and the results reported above, the intersections between CR 28 and Moore Drive is not justified for traffic signal controls in the future with the developments in place. However, as shown in Table 31, a traffic signal warrant is close to be justified. Therefore, a traffic signal control should be considered for this location to address the LOS F and the over-capacity operation (shown in Table 26), which is anticipated in the future when the development is in full operation.

6.2 The Intersection of CR 28 and Residential Component Entrance

Again, the AHV methodology is used for this intersection for both the AM and PM peak hours. The volumes at the entrance of the residential component on CR 28 during both the AM and PM peak hours in 2031 are presented in Table 18. Accordingly, the AHVs for this intersection are shown in Table 32.

Table 32 - AHV based on Peak Hours for CR 28 and the Entrance of the Residential Component

	EBL	EBT	NBL	NBT	SBT	SBR
2031 (AM Peak)	6	5	2	301	304	2
2031 (PM Peak)	3	5	6	349	575	8

Table 33 - Traffic Signal Warrant Calculations for CR 28 and Moore Drive Intersection

Justification	Guidance Approach Lanes (2 or more lane)	20\% Threshold Increase as per OTM	Estimated AHV	COMPLIANCE \%
Flow Condition	Restricted Flow			
AM Peak Hour				
1. Minimum Vehicular Volume	480	576	620	108\%
	120	216*	12	5\%
2. Delay to Cross Traffic	480	576	609	106\%
	50	60	6	11\%
PM Peak Hour				
1. Minimum Vehicular Volume	480	576	946	164\%
	120	216*	8	4\%
2. Delay to Cross Traffic	480	576	938	163\%
	50	60	3	5\%

* Volume requirements to be increased by 20% for an existing intersection when using the AHV approach as per OTM guidelines.
*Volume requirements to be increased by 50% for a T-intersection.
Based on the estimated AHVs, the analysis for Justification 7 was conducted as shown in Table 32. As seen from the compliance percentages, the estimated AHVs are not fulfilling the volume requirements to justify a traffic signal for the worst-case future scenario in 2031.

6.3 The Intersection of CR 28 and Recreational Component Secondary Entrance

Since the secondary entrance is not anticipated to be used heavily during the AM peak hour, the analysis will focus on the PM peak hour and the sold-out event scenarios. The AHV methodology is used for both scenarios at this intersection.

6.3.1 Traffic Signal Warrant Analysis for the Secondary Entrance during the PM Peak Hour

The volumes at the secondary entrance of the recreational component on CR 28 during the PM peak hour in 2031 are presented in Table 19. Accordingly, the AHVs for this intersection are shown in Table 34.

Table 34 - AHV based on the PM Peak Hour at the Secondary Entrance of the Recreational Component

	EBL	EBT	NBL	NBT	SBT	SBR
2031 (PM Peak)	4	6	42	409	531	58

Table 35 - Traffic Signal Warrant Calculations for the Secondary Entrance CR 28 and Moore Drive Intersection

Justification	Guidance Approach Lanes (2 or more Iane)	20\% Threshold Increase as per OTM	Estimated AHV	COMPLIANCE \%
	Restricted Flow	576	1050	182%
	480	120	216^{*}	10
2. Delay to Cross Traffic	480	576	1040	5%
	50	60	4	181%

* Volume requirements to be increased by 20% for an existing intersection when using the AHV approach as per OTM guidelines.
*Volume requirements to be increased by 50% for a T-intersection.
Based on the estimated AHVs, the analysis for Justification 7 was conducted as shown in Table 35. As seen from the compliance percentages, the estimated AHVs are not fulfilling the volume requirements to justify a traffic signal for the worst-case future scenario in 2031. It is worth noting that the volumes exiting from this entrance are anticipated to be low during the PM peak hour since most of the traffic will be entering the development during the PM peak hour and exiting later based on the nature of the recreational component and the assumptions mentioned before in the trip generation section.

6.3.2 Traffic Signal Warrant Analysis for the Secondary Entrance during a Sold-out Event

The critical case for the traffic signal warrant at this entrance is when the event is over and the vehicles are heading out from the secondary entrance. The volumes at the secondary entrance of the recreational component on CR 28 after the sold-out event are presented in Table 24. Accordingly, the AHVs for this intersection are shown in Table 36.

Table 36 - AHV based on the PM Peak Hour at the Secondary Entrance of the Recreational Component After the End of the Sold-out Event

	EBL	EBT	NBL	NBT	SBT	SBR
$\mathbf{2 0 2 1}$ (Off Peak)	382	382	0	1015	128	0

Based on the estimated AHVs, the analysis for Justification 7 was conducted as shown in Table 37. As seen from the compliance percentages, the estimated AHVs are fulfilling the volume requirements to justify a traffic signal in 2021 after a sold-out event. It is worth noting that these type of events will be held occasionally and during the summer season only. Therefore, a traffic signal option may be considered at this entrance keeping in mind that this signal should have a special timing plan design for special events.

Table 37 - Traffic Signal Warrant Calculations for the Secondary Entrance of the Recreational Component after the End of the Sold-out Event

Justification	Guidance Approach Lanes (2 or more Iane)	20\% Threshold Increase as per OTM	Estimated AHV	COMPLIANCE \%
	Restricted Flow	576	1907	331%
	480	120	216^{*}	763
2. Delay to Cross Traffic	480	576	1143	353%
	50	60	382	198%

6.4 The Intersection of CR 28 and Recreational Component Main Entrance

Since the critical traffic condition (higher traffic volumes during peak hours) of the main entrance is anticipated to be during the PM peak hour, the analysis will focus on the PM peak hour and the sold-out event scenarios. The AHV methodology is used for both scenarios at this intersection.

6.4.1 Traffic Signal Warrant Analysis for the Main Entrance during the PM Peak Hour

The volumes at the main entrance of the recreational component on CR 28 during the PM peak hour in 2021 are presented in Table 20. Accordingly, the AHVs for this intersection are shown in Table 38.

Table 38 - AHV based on the PM Peak Hour at the Main Entrance of the Recreational Component

	EBL	EBT	NBL	NBT	SBT	SBR
$\mathbf{2 0 2 1}$ (PM Peak)	79	107	138	325	291	189

Table 39 - Traffic Signal Warrant Calculations for the Main Entrance of the Recreational Development on CR 28

Justification	Guidance Approach Lanes (2 or more lane)	20\% Threshold Increase as per OTM	Estimated AHV	COMPLIANCE \%
	Restricted Flow			
1. Minimum Vehicular Volume	480	576	1129	196%
	120	216^{*}	186	86%
	480	576	943	164%

* Volume requirements to be increased by 20% for an existing intersection when using the AHV approach as per OTM guidelines.
*Volume requirements to be increased by 50% for a T-intersection.
Based on the estimated AHVs, the analysis for Justification 7 was conducted as shown in Table 39. As seen from the compliance percentages, the estimated AHVs are fulfilling at least 80% of the volume requirements to justify a traffic signal in 2021, which means a traffic signal will be required once the development is in full operation. The warrant
analysis is not required for the horizon years since the traffic volumes of current year scenario justifies the need for a traffic signal.

6.4.2 Traffic Signal Warrant Analysis for the Main Entrance during a Sold-out Event

Since a traffic signal is already warrant for this entrance even before the sold-out event impact, the traffic signal warrant for the sold-out event case at this entrance is not required. However, the traffic signal design should consider the amount of traffic that will be using the entrances/exits during the sold-out event and design a special timing plan for these occasions.

7.0 Conclusions and Recommendations

This Traffic Impact Study investigates and evaluates the impact of the proposed redevelopment of Kawartha Downs. The background traffic operation and the traffic operation with the consideration of the traffic generated from the development at the intersections of CR 28 and Moore Drive and Syer Line were assessed.

Based on the analysis completed in this study, the new trips generated by the development will have a significant impact on the traffic operation at the entrances of the recreational development on CR 28 and at the intersection of CR 28 and Moore Drive. On the other hand, the impact on Syer Line is not significant given the assumption that no direct access from the development to Syer Line. However, it is known to our team that the intersection of CR 28 and Whitfield Road will need enhancement which will have an impact on CR 28 intersection with Syer Line.

Additionally, this study examines the need for auxiliary lanes and traffic signals at the entrances of the developments and at the intersection of CR 28 and Moore Drive.

Based on the assumptions and the methodology followed in this study, the recommendations can be summarized in the following points:

- Improvements required regardless of the development impact
- At CR 28 intersection with Moore Drive, a left turn lane for the northbound traffic and a right turn taper for the southbound traffic are needed.
- Improvements required with the consideration of the development impact
- At the intersection of CR 28 and Moore Drive, a full-width right turn lane for the southbound traffic is needed in addition to a left turn lane for the northbound traffic.
- At the intersection of CR 28 and Moore Drive, it is recommended to consider the installation of a traffic signal at this intersection; however, a traffic signal is not fully warranted. The reason behind recommending a traffic signal is the substantially low LOS and high v/c ratio on Moore Drive after the full operation of the development.
- At the secondary entrance of the recreational development, a full-width right turn lane for the southbound traffic and a left turn lane for the left turn traffic are needed.
- At the main entrance of the recreational development, a traffic signal is warranted.

Sincerely,

Mostafa H Tawfeek, Ph.D., RSP1
Traffic/Transportation EIT
D.M. Wills Associates Limited

We Kingdon, P.Eng.
Project Engineer
D.M. Wills Associates Limited

Appendix A

Location Plan

*Not to scale. Approximate location for illustration only.

Appendix B

Draft Plan of Kawartha Downs Redevelopment

Appendix C

Traffic Data within the Study Area

Traffic Monitoring • Services \& Products

Project \#21-102 - D.M. Wills Associates

Intersection Count Report

Intersection:	Peterborough Rd 28 \& Moore Dr
Municipality:	Kawartha Downs
Count Date:	Jul 07, 2021
Site Code:	2110200001
Count Categories:	Cars, Trucks, Bicycles, Pedestrians
Count Period:	$07: 00-18: 00$
Weather:	Clear

Traffic Count Map

Ontario Traffic Inc.
Traffic Monitoring • Services \& Products

Intersection:
Site Code:
Municipality:
Count Date:

Peterborough Rd 28 \& Moore Dr
2110200001
Kawartha Downs
Jul 07, 2021

Traffic Count Summary

Peterborough Rd 28 \& Moore Dr 2110200001
Kawartha Downs
Jul 07, 2021

Peterborough Rd 28 - Traffic Summary

Hour	North Approach Totals						South Approach Totals						Total
	Includes Cars, Trucks, Bicycles						Includes Cars, Trucks, Bicycles						
	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	
07:00-08:00	0	343	9	0	352	0	14	418	0	0	432	0	784
08:00-09:00	0	262	10	0	272	0	7	312	0	0	319	0	591
09:00-10:00	0	261	16	0	277	0	4	276	0	0	280	0	557
10:00-11:00	0	264	8	0	272	0	0	273	0	0	273	0	545
11:00-12:00	0	302	10	0	312	0	3	360	0	0	363	0	675
12:00-13:00	0	374	12	0	386	0	7	355	0	0	362	0	748
13:00-14:00	0	282	6	0	288	0	5	279	0	0	284	0	572
14:00-15:00	0	270	8	0	278	0	0	236	0	0	236	0	514
15:00-16:00	0	368	8	0	376	0	10	265	0	0	275	0	651
16:00-17:00	0	417	21	0	438	0	5	298	0	0	303	0	741
17:00-18:00	0	306	3	0	309	0	7	263	0	0	270	0	579
GRAND TOTAL	0	3449	111	0	3560	0	62	3335	0	0	3397	0	6957

Traffic Count Summary

Peterborough Rd 28 \& Moore Dr 2110200001
Kawartha Downs
Jul 07, 2021

Moore Dr - Traffic Summary

Hour	East Approach Totals						West Approach Totals						
	Includes Cars, Trucks, Bicycles						Includes Cars, Trucks, Bicycles						
	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	Total
07:00-08:00	0	0	0	0	0	0	17	0	20	0	37	0	37
08:00-09:00	0	0	0	0	0	0	11	0	15	0	26	0	26
09:00-10:00	0	0	0	0	0	0	10	0	6	0	16	0	16
10:00-11:00	0	0	0	0	0	0	9	0	5	0	14	0	14
11:00-12:00	0	0	0	0	0	0	15	0	10	0	25	1	25
12:00-13:00	0	0	0	0	0	0	12	0	11	0	23	0	23
13:00-14:00	0	0	0	0	0	0	13	0	3	0	16	0	16
14:00-15:00	0	0	0	0	0	0	7	0	6	0	13	0	13
15:00-16:00	0	0	0	0	0	0	13	0	16	0	29	0	29
16:00-17:00	0	0	0	0	0	0	15	0	20	0	35	0	35
17:00-18:00	0	0	0	0	0	0	17	0	5	0	22	0	22
GRAND TOTAL	0	0	0	0	0	0	139	0	117	0	256	1	256

Traffic Count Data

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:	Peterborough Rd 28 \& Moore Dr
Site Code:	2110200001
Municipality:	Kawartha Downs
Count Date:	Jul 07, 2021

North Approach - Peterborough Rd 28

Start Time	Cars					Trucks					Bicycles					Total Peds	
	4	+			Total	4				Total	4	-	$\stackrel{+}{+}$?	Total		
07:00	0	55	2	0	57	0	2	0	0	2	0	1	0	0	1		0
07:15	0	88	3	0	91	0	13	1	0	14	0	0	0	0	0		0
07:30	0	115	0	0	115	0	8	0	0	8	0	0	0	0	0		0
07:45	0	54	3	0	57	0	7	0	0	7	0	0	0	0	0		0
08:00	0	49	2	0	51	0	10	1	0	11	0	0	0	0	0		0
08:15	0	69	1	0	70	0	9	1	0	10	0	0	0	0	0		0
08:30	0	57	2	0	59	0	9	2	0	11	0	0	0	0	0		0
08:45	0	54	1	0	55	0	5	0	0	5	0	0	0	0	0		0
09:00	0	52	2	0	54	0	6	0	0	6	0	0	0	0	0		0
09:15	0	72	6	0	78	0	11	0	0	11	0	0	0	0	0		0
09:30	0	54	5	0	59	0	9	0	0	9	0	0	0	0	0		0
09:45	0	50	2	0	52	0	7	1	0	8	0	0	0	0	0		0
10:00	0	65	1	0	66	0	1	0	0	1	0	0	0	0	0		0
10:15	0	52	2	0	54	0	2	0	0	2	0	0	0	0	0		0
10:30	0	67	1	0	68	0	5	0	0	5	0	0	0	0	0		0
10:45	0	66	4	0	70	0	6	0	0	6	0	0	0	0	0		0
11:00	0	72	3	0	75	0	4	1	0	5	0	0	0	0	0		0
11:15	0	66	4	0	70	0	4	1	0	5	0	0	0	0	0		0
11:30	0	72	1	0	73	0	4	0	0	4	0	1	0	0	1		0
11:45	0	70	0	0	70	0	6	0	0	6	0	3	0	0	3		0

Start Time	Cars					Trucks					Bicycles					Total Peds	
	4	-	$\stackrel{\rightharpoonup}{1}$		Total	4	1		$?$	Total	4	1			Total		
12:00	0	67	1	0	68	0	7	0	0	7	0	0	0	0	0		0
12:15	0	85	2	0	87	0	5	0	0	5	0	0	0	0	0		0
12:30	0	129	3	0	132	0	9	2	0	11	0	0	0	0	0		0
12:45	0	67	4	0	71	0	5	0	0	5	0	0	0	0	0		0
13:00	0	73	1	0	74	0	6	0	0	6	0	0	0	0	0		0
13:15	0	71	2	0	73	0	7	0	0	7	0	0	0	0	0		0
13:30	0	52	2	0	54	0	4	0	0	4	0	0	0	0	0		0
13:45	0	64	1	0	65	0	5	0	0	5	0	0	0	0	0		0
14:00	0	59	2	0	61	0	1	0	0	1	0	0	0	0	0		0
14:15	0	61	1	0	62	0	3	0	0	3	0	0	0	0	0		0
14:30	0	59	2	0	61	0	5	0	0	5	0	0	0	0	0		0
14:45	0	79	3	0	82	0	3	0	0	3	0	0	0	0	0		0
15:00	0	77	2	0	79	0	5	0	0	5	0	1	0	0	1		0
15:15	0	95	1	0	96	0	4	0	0	4	0	0	0	0	0		0
15:30	0	76	4	0	80	0	6	0	0	6	0	0	0	0	0		0
15:45	0	99	1	0	100	0	5	0	0	5	0	0	0	0	0		0
16:00	0	104	3	0	107	0	6	0	0	6	0	0	0	0	0		0
16:15	0	139	12	0	151	0	5	0	0	5	0	0	0	0	0		0
16:30	0	67	3	0	70	0	6	0	0	6	0	0	0	0	0		0
16:45	0	87	3	0	90	0	3	0	0	3	0	0	0	0	0		0
17:00	0	84	1	0	85	0	7	0	0	7	0	0	0	0	0		0
17:15	0	73	1	0	74	0	6	0	0	6	0	0	0	0	0		0
17:30	0	69	1	0	70	0	3	0	0	3	0	0	0	0	0		0
17:45	0	63	0	0	63	0	1	0	0	1	0	0	0	0	0		0
SUBTOTAL	0	3198	101	0	3299	0	245	10	0	255	0	6	0	0	6		0
$\begin{aligned} & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$	0	3198	101	0	3299	0	245	10	0	255	0	6	0	0	6		0

Traffic Count Data

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:	Peterborough Rd 28 \& Moore Dr
Site Code:	2110200001
Municipality:	Kawartha Downs
Count Date:	Jul 07, 2021

South Approach - Peterborough Rd 28

Start Time	Cars					Trucks					Bicycles					Total Peds	
	4	-		?	Total	4			\bigcirc	Total	4	+		?	Total		
07:00	2	59	0	0	61	0	9	0	0	9	0	0	0	0	0		0
07:15	2	75	0	0	77	5	15	0	0	20	0	0	0	0	0		0
07:30	0	146	0	0	146	1	12	0	0	13	0	0	0	0	0		0
07:45	4	96	0	0	100	0	6	0	0	6	0	0	0	0	0		0
08:00	2	52	0	0	54	1	7	0	0	8	0	0	0	0	0		0
08:15	0	79	0	0	79	1	9	0	0	10	0	0	0	0	0		0
08:30	1	70	0	0	71	0	12	0	0	12	0	0	0	0	0		0
08:45	2	77	0	0	79	0	6	0	0	6	0	0	0	0	0		0
09:00	0	71	0	0	71	1	7	0	0	8	0	0	0	0	0		0
09:15	2	64	0	0	66	0	8	0	0	8	0	0	0	0	0		0
09:30	1	72	0	0	73	0	6	0	0	6	0	0	0	0	0		0
09:45	0	41	0	0	41	0	7	0	0	7	0	0	0	0	0		0
10:00	0	65	0	0	65	0	2	0	0	2	0	0	0	0	0		0
10:15	0	55	0	0	55	0	1	0	0	1	0	0	0	0	0		0
10:30	0	78	0	0	78	0	2	0	0	2	0	0	0	0	0		0
10:45	0	69	0	0	69	0	1	0	0	1	0	0	0	0	0		0
11:00	1	54	0	0	55	0	4	0	0	4	0	0	0	0	0		0
11:15	1	100	0	0	101	0	6	0	0	6	0	1	0	0	1		0
11:30	0	95	0	0	95	0	5	0	0	5	0	0	0	0	0		0
11:45	1	90	0	0	91	0	5	0	0	5	0	0	0	0	0		0

Start Time						Trucks					Bicycles					Total Peds	
	4	+	$\stackrel{\rightharpoonup}{1}$	\bigcirc	Total	4	1	$\xrightarrow{1}$		Total	4	$\hat{1}$	$\stackrel{\rightharpoonup}{+}$		Total		
12:00	3	79	0	0	82	0	2	0	0	2	0	0	0	0	0		0
12:15	3	82	0	0	85	0	7	0	0	7	0	0	0	0	0		0
12:30	1	89	0	0	90	0	11	0	0	11	0	0	0	0	0		0
12:45	0	78	0	0	78	0	7	0	0	7	0	0	0	0	0		0
13:00	3	75	0	0	78	0	5	0	0	5	0	0	0	0	0		0
13:15	0	63	0	0	63	0	2	0	0	2	0	0	0	0	0		0
13:30	2	63	0	0	65	0	4	0	0	4	0	0	0	0	0		0
13:45	0	65	0	0	65	0	2	0	0	2	0	0	0	0	0		0
14:00	0	56	0	0	56	0	3	0	0	3	0	0	0	0	0		0
14:15	0	52	0	0	52	0	2	0	0	2	0	0	0	0	0		0
14:30	0	61	0	0	61	0	1	0	0	1	0	0	0	0	0		0
14:45	0	59	0	0	59	0	2	0	0	2	0	0	0	0	0		0
15:00	0	50	0	0	50	0	1	0	0	1	0	0	0	0	0		0
15:15	2	43	0	0	45	0	3	0	0	3	0	0	0	0	0		0
15:30	2	74	0	0	76	0	7	0	0	7	0	0	0	0	0		0
15:45	6	79	0	0	85	0	8	0	0	8	0	0	0	0	0		0
16:00	2	83	0	0	85	0	5	0	0	5	0	0	0	0	0		0
16:15	1	61	0	0	62	1	6	0	0	7	0	0	0	0	0		0
16:30	1	41	0	0	42	0	2	0	0	2	0	0	0	0	0		0
16:45	0	96	0	0	96	0	4	0	0	4	0	0	0	0	0		0
17:00	2	82	0	0	84	0	5	0	0	5	0	0	0	0	0		0
17:15	3	61	0	0	64	1	1	0	0	2	0	0	0	0	0		0
17:30	0	57	0	0	57	0	1	0	0	1	0	0	0	0	0		0
17:45	1	55	0	0	56	0	1	0	0	1	0	0	0	0	0		0
SUBtotal	51	3112	0	0	3163	11	222	0	0	233	0	1	0	0	1		0
$\begin{aligned} & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$	51	3112	0	0	3163	11	222	0	0	233	0	1	0	0	1		0

Traffic Count Data

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:	Peterborough Rd 28 \& Moore Dr
Site Code:	2110200001
Municipality:	Kawartha Downs
Count Date:	Jul 07, 2021

West Approach - Moore Dr

			Cars					rucks					ycles				
Start Time	4	1	$\stackrel{\rightharpoonup}{\text { Pr }}$	\bigcirc	Total	4	-		\bigcirc	Total	4	+		\bigcirc	Total	Total Peds	
07:00	3	0	2	0	5	0	0	1	0	1	0	0	0	0	0		0
07:15	1	0	0	0	1	2	0	0	0	2	0	0	0	0	0		0
07:30	2	0	2	0	4	6	0	0	0	6	0	0	0	0	0		0
07:45	3	0	15	0	18	0	0	0	0	0	0	0	0	0	0		0
08:00	2	0	0	0	2	0	0	1	0	1	0	0	0	0	0		0
08:15	4	0	2	0	6	0	0	2	0	2	0	0	0	0	0		0
08:30	2	0	6	0	8	1	0	0	0	1	0	0	0	0	0		0
08:45	2	0	3	0	5	0	0	1	0	1	0	0	0	0	0		0
09:00	2	0	1	0	3	1	0	0	0	1	0	0	0	0	0		0
09:15	2	0	2	0	4	0	0	1	0	1	0	0	0	0	0		0
09:30	1	0	0	0	1	1	0	1	0	2	0	0	0	0	0		0
09:45	1	0	1	0	2	2	0	0	0	2	0	0	0	0	0		0
10:00	3	0	1	0	4	0	0	0	0	0	0	0	0	0	0		0
10:15	3	0	0	0	3	0	0	0	0	0	0	0	0	0	0		0
10:30	2	0	2	0	4	0	0	0	0	0	0	0	0	0	0		0
10:45	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0		0
11:00	3	0	1	0	4	1	0	0	0	1	0	0	0	0	0		0
11:15	2	0	5	0	7	3	0	0	0	3	0	0	0	0	0		0
11:30	4	0	1	0	5	0	0	0	0	0	0	0	0	0	0		1
11:45	1	0	3	0	4		0	0	0	1	0	0	0	0	0		0

Start Time	Cars					Trucks					Bicycles					Total Peds	
	4	1	1		Total	4	\uparrow			Total	-				Total		
12:00	4	0	6	0	10	2	0	0	0	2	0	0	0	0	0		0
12:15	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0		0
12:30	1	0	0	0	1	2	0	2	0	4	0	0	0	0	0		0
12:45	1	0	2	0	3	1	0	1	0	2	0	0	0	0	0		0
13:00	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0		0
13:15	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0		0
13:30	3	0	1	0	4	0	0	1	0	1	0	0	0	0	0		0
13:45	4	0	1	0	5	1	0	0	0	1	0	0	0	0	0		0
14:00	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0		0
14:15	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0		0
14:30	2	0		0	3	0	0	0	0	0	0	0	0	0	0		0
14:45	2	0	1	0	3	1	0	0	0	1	0	0	0	0	0		0
15:00	3	0	3	0	6	0	0	0	0	0	0	0	0	0	0		0
15:15	2	0	2	0	4	0	0	0	0	0	0	0	0	0	0		0
15:30	7	0	5	0	12	0	0	0	0	0	0	0	0	0	0		0
15:45	1	0	6	0	7	0	0	0	0	0	0	0	0	0	0		0
16:00	6	0	6	0	12	0	0	0	0	0	0	0	0	0	0		0
16:15	3	0	5	0	8	0	0	0	0	0	0	0	0	0	0		0
16:30	3	0	2	0	5	0	0	0	0	0	0	0	0	0	0		0
16:45	3	0	4	0	7	0	0	3	0	3	0	0	0	0	0		0
17:00	11	0	1	0	12	0	0	0	0	0	0	0	0	0	0		0
17:15	5	0	1	0	6	0	0	0	0	0	0	0	0	0	0		0
17:30	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0		0
17:45	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0		0
SUBTOTAL	113	0	103	0	216	26	0	14	0	40	0	0	0	0	0		1
GRAND TOTAL	113	0	103	0	216	26	0	14	0	40	0	0	0	0	0		1

Peak Hour Diagram

Ontario Traffic Inc．
 Traffic Monitoring • Services \＆Products

Specified Period
From：
To：
07：00：00
10：00：00

One Hour Peak
From：
07：00：00
To： 08：00：00

Intersection：
Site Code：
Count Date：

Peterborough Rd 28 \＆Moore Dr
2110200001
Jul 07， 2021

Weather conditions：Clear

Unsignalized Intersection＊＊
Major Road：Peterborough Rd 28 runs N／S

Peds： 0
Moore Dr

\％	50	日	Totals
0	0	0	0
0	8	9	17
0	1	19	20

Peds： 0

West Approach				－		－	$?$
	Out	In	Total	Totals	14	418	0
日	28	16	44	®	8	376	0
50.	9	7	16	50	6	42	0
	0	0	0	\％	0	0	0
	37	23	60		erbo	ough	

South Approach			
	Out	In	Total
θ	384	331	715
50	48	31	79
\％${ }^{\circ}$	0	1	1
	432	363	795

Peak Hour Summary

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:	Peterborough Rd 28 \& Moore Dr
Site Code:	2110200001
Count Date:	Jul 07, 2021
Period:	07:00-10:00

Peak Hour Data (07:00-08:00)

Peak Hour Diagram

Ontario Traffic Inc．
 Traffic Monitoring • Services \＆Products

Specified Period
From：10：00：00
To：
14：00：00

One Hour Peak

From：
11：45：00
To：

Intersection：

Site Code：
Peterborough Rd 28 \＆Moore Dr

Count Date：
2110200001
Jul 07， 2021

Weather conditions：Clear

Unsignalized Intersection＊＊
Major Road：Peterborough Rd 28 runs N／S

Moore Dr

\％	50	日	Totals
0	0	0	0
0	6	6	12
0	2	9	11

Peds： 0

Peds： 0

Peterborough Rd 28

South Approach

Peak Hour Summary

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:	Peterborough Rd 28 \& Moore Dr
Site Code:	2110200001
Count Date:	Jul 07, 2021
Period:	$10: 00-14: 00$

Peak Hour Data (11:45-12:45)

Peak Hour Diagram

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Specified Period
From: 14:00:00
To:

One Hour Peak
From:
15:30:00
To:
16:30:00

Intersection:
Site Code:
Count Date:

Peterborough Rd 28 \& Moore Dr
2110200001
Jul 07, 2021

Weather conditions:

Clear

Unsignalized Intersection **
Major Road: Peterborough Rd 28 runs N/S

Peds: 0
Moore Dr

Wb	50	日	Totals
0	0	0	0
0	0	17	17
0	0	22	22

West Approach			
Out	In	Total	
39	31	70	
	0	1	1
39	$\mathbf{3 2}$	$\mathbf{7 1}$	

Peds: 0

Peterborough Rd 28

South Approach

Peak Hour Summary

Ontario Traffic Inc.

Intersection:	Peterborough Rd 28 \& Moore Dr
Site Code:	2110200001
Count Date:	Jul 07, 2021
Period:	$14: 00-18: 00$

Peak Hour Data (15:30-16:30)

	North Approach Peterborough Rd 28									128			East Approach			West Approach Moore Dr					Total Vehicl
Start Time	- 1	$\stackrel{\rightharpoonup}{r}$		Peds	Total	4	1		?	Peds	Total		$\uparrow \quad$?	Peds	Total		- \quad -	$?$	Peds	Total	es
15:30	82	4	0	0	86	2	81		0	0	83			0		7	5	0	0	12	181
15:45	104	1	0	0	105	6	87		0	0	93			0		1	6	0	0	7	205
16:00	110	3	0	0	113	2	88		0	0	90			0		6	6	0	0	12	215
16:15	144	12	0	0	156	2	67		0	0	69			0		3	5	0	0	8	233
Grand Total	440	20	0	0	460	12	323		0	0	335			0	0	17	22	0	0	39	834
$\begin{array}{\|c\|} \hline \text { Approach } \\ \% \end{array}$	95.7	4.3	0		-	3.6	96.4		0		-				-	43.6	56.4	0		-	
Totals \%	52.8	2.4	0		55.2	1.4	38.7		0		40.2				0	2	2.6	0		4.7	
PHF	0.76	0.42	0		0.74	0.5	0.92		0		0.9				0	0.61	0.92	0		0.81	0.89
Cars	418	20	0		438	11	297		0		308				0	17	22	0		39	785
\% Cars	95	100	0		95.2	91.7	92		0		91.9				0	100	100	0		100	94.1
Trucks	22	0	0		22	1	26		0		27				0	0	0	0		0	49
\% Trucks	5	0	0		4.8	8.3	8		0		8.1				0	0	0	0		0	5.9
Bicycles	0	0	0		0	0	0		0		0				0	0	0	0		0	0
\% Bicycles	0	0	0		0	0	0		0		0				0	0	0	0		0	0
Peds				0	-					0	-			0	-				0	-	0
\% Peds				0	-					0	-			0	-				0	-	

Traffic Monitoring • Services \& Products

Project \#21-102 - D.M. Wills Associates

Intersection Count Report

Intersection:	Peterborough Rd 28 \& Syer Line
Municipality:	Kawartha Downs
Count Date:	Jul 07, 2021
Site Code:	2110200002
Count Categories:	Cars, Trucks, Bicycles, Pedestrians
Count Period:	$07: 00-18: 00$
Weather:	Clear

Traffic Count Map

Ontario Traffic Inc.
Traffic Monitoring • Services \& Products

Intersection:
Site Code:
Municipality:
Count Date:

Peterborough Rd 28 \& Syer Line
2110200002
Kawartha Downs
Jul 07, 2021

Traffic Count Summary

Peterborough Rd 28 \& Syer Line 2110200002
Kawartha Downs
Jul 07, 2021

Peterborough Rd 28 - Traffic Summary

Hour	North Approach Totals						South Approach Totals						Total
	Includes Cars, Trucks, Bicycles						Includes Cars, Trucks, Bicycles						
	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	
07:00-08:00	0	249	0	0	249	1	10	320	0	0	330	0	579
08:00-09:00	0	269	5	0	274	1	5	324	0	0	329	0	603
09:00-10:00	0	240	6	0	246	0	3	317	0	0	320	0	566
10:00-11:00	0	233	6	0	239	0	0	315	0	0	315	0	554
11:00-12:00	0	303	7	0	310	0	1	365	0	0	366	0	676
12:00-13:00	0	327	6	0	333	0	7	345	0	0	352	0	685
13:00-14:00	0	347	3	0	350	0	4	313	0	0	317	0	667
14:00-15:00	0	322	9	0	331	0	1	282	0	0	283	0	614
15:00-16:00	0	394	9	0	403	0	6	336	0	0	342	0	745
16:00-17:00	0	450	12	0	462	0	7	418	0	0	425	0	887
17:00-18:00	0	420	9	0	429	0	7	397	0	0	404	0	833
GRAND TOTAL	0	3554	72	0	3626	2	51	3732	0	0	3783	0	7409

Traffic Count Summary

Peterborough Rd 28 \& Syer Line 2110200002
Kawartha Downs
Jul 07, 2021

Syer Line - Traffic Summary

Hour	East Approach Totals						West Approach Totals						Total
	Includes Cars, Trucks, Bicycles						Includes Cars, Trucks, Bicycles						
	Left	Thru	Right	U-Turn	Total	Peds	Left	Thru	Right	U-Turn	Total	Peds	
07:00-08:00	0	0	0	0	0	0	8	0	2	0	10	0	10
08:00-09:00	0	0	0	0	0	0	9	0	11	0	20	0	20
09:00-10:00	0	0	0	0	0	0	3	0	7	0	10	0	10
10:00-11:00	0	0	0	0	0	0	5	0	4	0	9	0	9
11:00-12:00	0	0	0	0	0	0	14	0	6	0	20	0	20
12:00-13:00	0	0	0	0	0	0	8	0	5	0	13	0	13
13:00-14:00	0	0	0	0	0	0	8	0	12	0	20	1	20
14:00-15:00	0	0	0	0	0	0	6	0	2	0	8	0	8
15:00-16:00	0	0	0	0	0	0	10	0	8	0	18	0	18
16:00-17:00	0	0	0	0	0	0	7	0	2	0	9	0	9
17:00-18:00	0	0	0	0	0	0	12	0	8	0	20	0	20
GRAND TOTAL	0	0	0	0	0	0	90	0	67	0	157	1	157

Traffic Count Data

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:
Site Code:
Municipality:
Count Date:

Peterborough Rd 28 \& Syer Line
2110200002
Kawartha Downs
Jul 07, 2021

North Approach - Peterborough Rd 28

Start Time	Cars					Trucks					Bicycles					Total Peds	
	4	+	$\stackrel{\rightharpoonup}{\text { Pr }}$		Total	4	A			Total	4	+			Total		
07:00	0	23	0	0	23	0	0	0	0	0	0	0	0	0	0		0
07:15	0	60	0	0	60	0	8	0	0	8	0	0	0	0	0		0
07:30	0	86	0	0	86	0	5	0	0	5	0	0	0	0	0		1
07:45	0	59	0	0	59	0	8	0	0	8	0	0	0	0	0		0
08:00	0	59	4	0	63	0	14	0	0	14	0	0	0	0	0		1
08:15	0	65	0	0	65	0	7	0	0	7	0	0	0	0	0		0
08:30	0	58	1	0	59	0	5	0	0	5	0	0	0	0	0		0
08:45	0	51	0	0	51	0	10	0	0	10	0	0	0	0	0		0
09:00	0	36	1	0	37	0	3	0	0	3	0	0	0	0	0		0
09:15	0	59	2	0	61	0	8	1	0	9	0	0	0	0	0		0
09:30	0	61	1	0	62	0	8	0	0	8	0	0	0	0	0		0
09:45	0	59	1	0	60	0	6	0	0	6	0	0	0	0	0		0
10:00	0	59	1	0	60	0	1	0	0	1	0	0	0	0	0		0
10:15	0	54	2	0	56	0	3	0	0	3	0	0	0	0	0		0
10:30	0	55	2	0	57	0	3	0	0	3	0	0	0	0	0		0
10:45	0	56	1	0	57	0	2	0	0	2	0	0	0	0	0		0
11:00	0	67	2	0	69	0	5	0	0	5	0	0	0	0	0		0
11:15	0	63	0	0	63	0	5	0	0	5	0	0	0	0	0		0
11:30	0	80	1	0	81	0	4	0	0	4	0	0	0	0	0		0
11:45	0	76	4	0	80	0	3	0	0	3	0	0	0	0	0		0

Start Time	Cars										Bicycles					Total Peds	
	4	+	$\xrightarrow{+}$	\bigcirc	Total	4	1	$\stackrel{\rightharpoonup}{1}$	\bigcirc	Total	4	1			Total		
12:00	0	73	0	0	73	0	8	0	0	8	0	0	0	0	0		0
12:15	0	76	4	0	80	0	5	0	0	5	0	0	0	0	0		0
12:30	0	77	2	0	79	0	6	0	0	6	0	0	0	0	0		0
12:45	0	77	0	0	77	0	5	0	0	5	0	0	0	0	0		0
13:00	0	65	0	0	65	0	3	0	0	3	0	0	0	0	0		0
13:15	0	75	1	0	76	0	8	0	0	8	0	0	0	0	0		0
13:30	0	99	1	0	100	0	5	0	0	5	0	0	0	0	0		0
13:45	0	87	1	0	88	0	5	0	0	5	0	0	0	0	0		0
14:00	0	76	3	0	79	0	2	0	0	2	0	0	0	0	0		0
14:15	0	77	2	0	79	0	1	0	0	1	0	0	0	0	0		0
14:30	0	86	2	0	88	0	1	0	0	1	0	0	0	0	0		0
14:45	0	78	2	0	80	0	1	0	0	1	0	0	0	0	0		0
15:00	0	101	1	0	102	0	5	1	0	6	0	0	0	0	0		0
15:15	0	96	3	0	99	0	4	0	0	4	0	0	0	0	0		0
15:30	0	87	1	0	88	0	6	1	0	7	0	0	0	0	0		0
15:45	0	90	2	0	92	0	5	0	0	5	0	0	0	0	0		0
16:00	0	114	4	0	118	0	7	0	0	7	0	0	0	0	0		0
16:15	0	96	3	0	99	0	9	0	0	9	0	0	0	0	0		0
16:30	0	109	0	0	109	0	5	0	0	5	0	0	0	0	0		0
16:45	0	105	5	0	110	0	5	0	0	5	0	0	0	0	0		0
17:00	0	127	1	0	128	0	7	0	0	7	0	0	0	0	0		0
17:15	0	102	3	0	105	0	7	0	0	7	0	0	0	0	0		0
17:30	0	89	2	0	91	0	5	0	0	5	0	0	0	0	0		0
17:45	0	79	3	0	82	0	4	0	0	4	0	0	0	0	0		0
SUBTOTAL	0	3327	69	0	3396	0	227	3	0	230	0	0	0	0	0		2
$\begin{aligned} & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$	0	3327	69	0	3396	0	227	3	0	230	0	0	0	0	0		2

Traffic Count Data

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:
Site Code:
Municipality:
Count Date:

Peterborough Rd 28 \& Syer Line
2110200002
Kawartha Downs
Jul 07, 2021

South Approach - Peterborough Rd 28

Start Time	Cars					Trucks					Bicycles						Total Peds	
	4	1	$\stackrel{\rightharpoonup}{+}$		Total	4	+	$\stackrel{\rightharpoonup}{\text { Pr }}$		Total	4	1			Total			
07:00	6	29	0	0	35	0	10	0	0	10	0	0	0	0	0			0
07:15	1	61	0	0	62	0	6	0	0	6	0	0	0	0	0			0
07:30	0	102	0	0	102	0	9	0	0	9	0	0	0	0	0			0
07:45	3	97	0	0	100	0	6	0	0	6	0	0	0	0	0			0
08:00	0	58	0	0	58	1	9	0	0	10	0	0	0	0	0			0
08:15	1	84	0	0	85	0	14	0	0	14	0	0	0	0	0			0
08:30	1	73	0	0	74	1	9	0	0	10	0	0	0	0	0			0
08:45	1	74	0	0	75	0	3	0	0	3	0	0	0	0	0			0
09:00	3	46	0	0	49	0	5	0	0	5	0	0	0	0	0			0
09:15	0	65	0	0	65	0	11	0	0	11	0	0	0	0	0			0
09:30	0	94	0	0	94	0	7	0	0	7	0	0	0	0	0			0
09:45	0	81	0	0	81	0	8	0	0	8	0	0	0	0	0			0
10:00	0	76	0	0	76	0	1	0	0	1	0	0	0	0	0			0
10:15	0	77	0	0	77	0	2	0	0	2	0	0	0	0	0			0
10:30	0	67	0	0	67	0	2	0	0	2	0	0	0	0	0			0
10:45	0	87	0	0	87	0	3	0	0	3	0	0	0	0	0			0
11:00	0	78	0	0	78	0	4	0	0	4	0	0	0	0	0			0
11:15	1	101	0	0	102	0	5	0	0	5	0	0	0	0	0			0
11:30	0	86	0	0	86	0	5	0	0	5	0	0	0	0	0			0
11:45	0	82	0	0	82	0	4	0	0	4	0	0	0	0	0			0

Start Time						Trucks					Bicycles					Total Peds	
	4	+	$\stackrel{ }{ }$	2	Total	4	+	$\xrightarrow{1}$		Total	4	$\hat{1}$	$\stackrel{\rightharpoonup}{+}$		Total		
12:00	1	76	0	0	77	0	2	0	0	2	0	0	0	0	0		0
12:15	0	79	0	0	79	0	3	0	0	3	0	0	0	0	0		0
12:30	3	86	0	0	89	0	8	0	0	8	0	0	0	0	0		0
12:45	2	84	0	0	86	1	7	0	0	8	0	0	0	0	0		0
13:00	0	76	0	0	76	1	6	0	0	7	0	0	0	0	0		0
13:15	0	72	0	0	72	0	4	0	0	4	0	0	0	0	0		0
13:30	2	72	0	0	74	0	6	0	0	6	0	0	0	0	0		0
13:45	1	73	0	0	74	0	4	0	0	4	0	0	0	0	0		0
14:00	0	65	0	0	65	0	3	0	0	3	0	0	0	0	0		0
14:15	0	66	0	0	66	0	2	0	0	2	0	0	0	0	0		0
14:30	0	67	0	0	67	0	2	0	0	2	0	0	0	0	0		0
14:45	1	76	0	0	77	0	1	0	0	1	0	0	0	0	0		0
15:00	1	69	0	0	70	0	4	0	0	4	0	0	0	0	0		0
15:15	3	68	0	0	71	0	4	0	0	4	0	0	0	0	0		0
15:30	0	81	0	0	81	0	7	0	0	7	0	0	0	0	0		0
15:45	2	98	0	0	100	0	5	0	0	5	0	0	0	0	0		0
16:00	0	94	0	0	94	0	6	0	0	6	0	0	0	0	0		0
16:15	3	89	0	0	92	0	7	0	0	7	0	0	0	0	0		0
16:30	1	109	0	0	110	0	5	0	0	5	0	0	0	0	0		0
16:45	3	102	0	0	105	0	6	0	0	6	0	0	0	0	0		0
17:00	2	92	0	0	94	0	8	0	0	8	0	0	0	0	0		0
17:15	2	94	0	0	96	0	6	0	0	6	0	0	0	0	0		0
17:30	1	98	0	0	99	0	6	0	0	6	0	0	0	0	0		0
17:45	2	87	0	0		0	6	0	0	6	0	0	0	0	0		0
SUBTOTAL	47	3491	0	0	3538	4	241	0	0	245	0	0	0	0	0		0
$\begin{aligned} & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$	47	3491	0	0	3538	4	241	0	0	245	0	0	0	0	0		0

Traffic Count Data

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:
Site Code:
Municipality:
Count Date:

Peterborough Rd 28 \& Syer Line 2110200002

Kawartha Downs
Jul 07, 2021

West Approach - Syer Line

			ars										ycles				
Start Time	4	+			Total					Total	4	1			Total	Total Peds	
07:00	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0		0
07:15	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0		0
07:30	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0		0
07:45	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0		0
08:00	4	0	4	0	8	0	0	0	0	0	0	0	0	0	0		0
08:15	2	0	3	0	5	0	0	0	0	0	0	0	1	0	1		0
08:30	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0		0
08:45	1	0	2	0	3	1	0	0	0	1	0	0	0	0	0		0
09:00	0	0	3	0	3	0	0	1	0	1	0	0	0	0	0		0
09:15	2	0	2	0	4	0	0	0	0	0	0	0	0	0	0		0
09:30	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0		0
09:45	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0		0
10:00	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0		0
10:15	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0		0
10:30	2	0	1	0	3	0	0	0	0	0	0	0	0	0	0		0
10:45	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0		0
11:00	4	0	2	0	6	0	0	1	0	1	0	0	0	0	0		0
11:15	5	0	2	0	7	0	0	0	0	0	0	0	0	0	0		0
11:30	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0		0
11:45	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0		0

Start Time	Cars					Trucks					Bicycles					Total Peds	
	4	1			Total	-	-			Total	4	令			Total		
12:00	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0		0
12:15	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0		0
12:30	2	0	3	0	5	0	0	0	0	0	0	0	0	0	0		0
12:45	3	0	1	0	4	0	0	0	0	0	0	0	0	0	0		0
13:00	3	0	2	0	5	0	0	0	0	0	0	0	0	0	0		0
13:15	2	0	1	0	3	0	0	0	0	0	0	0	0	0	0		0
13:30	0	0	3	0	3	0	0	0	0	0	0	0	0	0	0		1
13:45	3	0	4	0	7	0	0	2	0	2	0	0	0	0	0		0
14:00	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0		0
14:15	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0		0
14:30	2	0	,	0	3	0	0	0	0	0	0	0	0	0	0		0
14:45	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0		0
15:00	1	0	3	0	4	0	0	0	0	0	0	0	0	0	0		0
15:15	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0		0
15:30	5	0		0	8	0	0	0	0	0	0	0	0	0	0		0
15:45	3	0		0	5	0	0	0	0	0	0	0	0	0	0		0
16:00	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0		0
16:15	1	0	1	0	2	0	0	0	0	0	0	0	0	0	0		0
16:30	4	0	1	0	5	0	0	0	0	0	0	0	0	0	0		0
16:45	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0		0
17:00	2	0	4	0	6	0	0	0	0	0	0	0	0	0	0		0
17:15	2	0	1	0	3	0	0	0	0	0	0	0	0	0	0		0
17:30	4	0	1	0	5	0	0	0	0	0	0	0	0	0	0		0
17:45	4	0	2	0	6	0	0	0	0	0	0	0	0	0	0		0
SUBTOTAL	85	0	62	0	147	5	0	4	0	9	0	0	1	0	1		1
$\begin{aligned} & \text { GRAND } \\ & \text { TOTAL } \end{aligned}$	85	0	62	0	147	5	0	4	0	9	0	0	1	0	1		1

Peak Hour Diagram

Ontario Traffic Inc．
 Traffic Monitoring • Services \＆Products

Specified Period
From：
07：00：00
10：00：00
To：

One Hour Peak
From：
07：30：00
To： 08：30：00

Intersection：
Site Code：
Count Date：

Peterborough Rd 28 \＆Syer Line
2110200002
Jul 07， 2021

Weather conditions：Clear

Unsignalized Intersection＊＊
Major Road：Peterborough Rd 28 runs N／S

Peds： 2

O6	50	团	Totals
0	0	0	0
0	0	9	9
1	0	8	9

$$
\text { o } \quad \text { E }
$$

	South Approach		
	Out	In	Total
回	345	277	622
50	39	34	73
O\％	0	1	1
	384	312	696

Peak Hour Summary

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:	Peterborough Rd 28 \& Syer Line
Site Code:	2110200002
Count Date:	Jul 07, 2021
Period:	$07: 00-10: 00$

Peak Hour Data (07:30-08:30)

	North Approach Peterborough Rd 28					South Approach Peterborough Rd 28						East Approach				West Approach Syer Line					Total Vehicl
Start Time	- 1	$\stackrel{\rightharpoonup}{r}$		Peds	Total	4	1		?	Peds	Total		$\uparrow \overrightarrow{\text { ® }}$	Peds	Total		$\uparrow \quad \stackrel{ }{*}$	$?$	Peds	Total	es
07:30	91	0	0	1	91	0	111		0	0	111			0		2	0	0	0	2	204
07:45	67	0	0	0	67	3	103		0	0	106			0		1	1	0	0	2	175
08:00	73	4	0	1	77	1	67		0	0	68			0		4	4	0	0	8	153
08:15	72	0	0	0	72	1	98		0	0	99			0		2	4	0	0	6	177
Grand Total	303	4	0	2	307	5	379		0	0	384			0	0	9	9	0	0	18	709
$\underset{\%}{\text { Approach }}$	98.7	1.3	0		-	1.3	98.7		0		-				-	50	50	0		-	
Totals \%	42.7	0.6	0		43.3	0.7	53.5		0		54.2				0	1.3	1.3	0		2.5	
PHF	0.83	0.25	0		0.84	0.42	0.85		0		0.86				0	0.56	0.56	0		0.56	0.87
Cars	269	4	0		273	4	341		0		345				0	9	8	0		17	635
\% Cars	88.8	100	0		88.9	80	90		0		89.8				0	100	88.9	0		94.4	89.6
Trucks	34	0	0		34	1	38		0		39				0	0	0	0		0	73
\% Trucks	11.2	0	0		11.1	20	10		0		10.2				0	0	0	0		0	10.3
Bicycles	0	0	0		0	0	0		0		0				0	0	1	0		1	1
\% Bicycles	0	0	0		0	0	0		0		0				0	0	11.1	0		5.6	0.1
Peds				2	-					0	-			0	-				0	-	2
\% Peds				100	-					0	-			0	-				0	-	

Peak Hour Diagram

Ontario Traffic Inc．
 Traffic Monitoring • Services \＆Products

Specified Period
From：
To：
10：00：00
14：00：00

One Hour Peak
From：
12：00：00
To：

Intersection：

Site Code：
Count Date：

Peterborough Rd 28 \＆Syer Line
2110200002
Jul 07， 2021

Weather conditions：Clear

Unsignalized Intersection＊＊
Major Road：Peterborough Rd 28 runs N／S

Peds： 0

O5	Tha	Totals		
0	0	0	$\mathbf{0}$	$\mathbf{3}$
0	2	6	$\mathbf{8}$	$\mathbf{1}$
0	0	5	$\mathbf{5}$	$\mathbf{7}$

$$
\text { oin } \quad \underset{s}{N}
$$

West Approach				4		1	$?$
	Out	In	Total	Totals	7	345	0
团	11	12	23	®	6	325	0
0.0	2	1	3	50	1	20	0
	0	0	0	\％	0	0	0
	13	13	26		，	ough	

South Approach		
Out	In	Total
6	331	308
23	639	
	24	45
$\mathbf{3 5 2}$	$\mathbf{3 3 2}$	$\mathbf{6 8 4}$

Peak Hour Summary

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:	Peterborough Rd $28 \&$ Syer Line
Site Code:	2110200002
Count Date:	Jul 07, 2021
Period:	$10: 00-14: 00$

Peak Hour Data (12:00-13:00)

Peak Hour Diagram

Ontario Traffic Inc．
 Traffic Monitoring • Services \＆Products

Specified Period
From：14：00：00
To：

One Hour Peak
From：
16：30：00
To：
17：30：00

Intersection：
Site Code：
Count Date：

Peterborough Rd 28 \＆Syer Line
2110200002
Jul 07， 2021

Weather conditions：Clear

Unsignalized Intersection＊＊
Major Road：Peterborough Rd 28 runs N／S

Peds： 0

अंb	100	日	Totals
0	0	0	0
0	1	8	9
0	0	6	6

$$
\text { Peds: } 0
$$

West Approach				4		个	\bigcirc
	Out	In	Total	Totals	8	422	
日	14	17	31	团	8	397	0
50	1	0	1	50	0	25	0
\％${ }^{\text {d }}$	0	0	0	\％	0	0	0
	15	17	32		rbo	ough	

South Approach			
	Out	In	Total
\square	405	449	854
0.0	25	24	49
\％	0	0	0
	430	473	903

Peak Hour Summary

Ontario Traffic Inc.
 Traffic Monitoring • Services \& Products

Intersection:	Peterborough Rd 28 \& Syer Line
Site Code:	2110200002
Count Date:	Jul 07,2021
Period:	$14: 00-18: 00$

Peak Hour Data (16:30-17:30)

	North Approach Peterborough Rd 28					South Approach Peterborough Rd 28						East Approach				West Approach Syer Line					Total Vehicl
Start Time	- 1	$\stackrel{\rightharpoonup}{r}$		Peds	Total	4	1		?	Peds	Total		$\uparrow \overrightarrow{\text { ® }}$	Peds	Total		$\uparrow \quad \stackrel{ }{*}$	$?$	Peds	Total	es
16:30	114	0	0	0	114	1	114		0	0	115			0		4	1	0	0	5	234
16:45	110	5	0	0	115	3	108		0	0	111			0		1	0	0	0	1	227
17:00	134	1	0	0	135	2	100		0	0	102			0		2	4	0	0	6	243
17:15	109	3	0	0	112	2	100		0	0	102			0		2	1	0	0	3	217
Grand Total	467	9	0	0	476	8	422		0	0	430			0	0	9	6	0	0	15	921
$\begin{array}{\|c\|} \hline \text { Approach } \\ \% \end{array}$	98.1	1.9	0		-	1.9	98.1		0		-				-	60	40	0		-	
Totals \%	50.7	1	0		51.7	0.9	45.8		0		46.7				0	1	0.7	0		1.6	
PHF	0.87	0.45	0		0.88	0.67	0.93		0		0.93				0	0.56	0.38	0		0.63	0.95
Cars	443	9	0		452	8	397		0		405				0	8	6	0		14	871
\% Cars	94.9	100	0		95	100	94.1		0		94.2				0	88.9	100	0		93.3	94.6
Trucks	24	0	0		24	0	25		0		25				0	1	0	0		1	50
\% Trucks	5.1	0	0		5	0	5.9		0		5.8				0	11.1	0	0		6.7	5.4
Bicycles	0	0	0		0	0	0		0		0				0	0	0	0		0	0
\% Bicycles	0	0	0		0	0	0		0		0				0	0	0	0		0	0
Peds				0	-					0	-			0	-				0	-	0
\% Peds				0	-					0	-			0	-				0	-	

Appendix D

According to the HCM 2010, T-intersections with a stop sign on the stem of the T are considered Two-way Stop-Controlled intersections and have the same Level of Service (LOS) definitions and criteria as any Two-way Stop-Controlled intersection. For this type of intersections, the LOS is determined based on the control delay and is determined for each minor road lane group and the left-turn movement of the major road. The control delay, in this case, includes the delay due to deceleration to stop from the free-flow speed at the back of a queue (formed because of the stop sign), the move-up time within the queve, stopped delay at the front of the queve, and delay due to acceleration back to free-flow speed. The calculation of the control delay of a specific movement is a function of the flow rate and the capacity of this specific movement.

The description and criteria of the LOS at Two-way Stop-Controlled intersections are summarized in the table below.

LOS for Two-Way Stop-Controlled Intersections

Description of Conditions	Control Delay (sec/veh)	LOS by v/c Ratio v/c \leq 1.0	$\mathbf{v / c}>$
No delay for stop-controlled approaches	$0-10$	A	F
Operations with minor delay	$>10-15$	B	F
Operations with moderate delay	$>15-25$	C	F
Operations with some delay	$>25-35$	D	F
Operations with high delay	$>35-50$	E	F
Operation with extreme congestion with very high delay	>50	F	F

Appendix E

Synchro Reports for the
Background Traffic Conditions

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	1029	-	314	-
-				
HCM Lane V/C Ratio	0.02	-0.231	-	-
HCM Control Delay (s)	8.6	0	19.9	-
HCM Lane LOS	A	A	C	-
HCM 95th \%tile Q(veh)	0.1	-	0.9	-

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR	
Capacity (veh/h)	1150	-	461	-	-
HCM Lane V/C Ratio	0.005	-	0.07	-	-
HCM Control Delay (s)	8.1	0	13.4	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.2	-	-

		Intersection				
Int Delay, s/veh	1.6					
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	个	
Traffic Vol, veh/h	19	22	15	462	379	10
Future Vol, veh/h	19	22	15	462	379	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#		-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	51	51	68	68	72	72
Heavy Vehicles, \%	11	11	11	11	9	9
Mvmt Flow	37	43	22	679	526	14

HCM LOS C

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	985	-	272	-

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR	
Capacity (veh/h)	1113	-	419	-	-
HCM Lane V/C Ratio	0.006	-0.085	-	-	
HCM Control Delay (s)	8.3	0	14.4	-	-
HCM Lane LOS	A	A	B	-	-
HCM 95th \%tile Q(veh)	0	-	0.3	-	-

		Intersection				
Int Delay, s/veh	2					
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	\uparrow	
Traffic Vol, veh/h	21	24	17	510	418	11
Future Vol, veh/h		24	17	510	418	11
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stop		Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	51	51	68	68	72	72
Heavy Vehicles, \%	11	11	11	11	9	9
Mvmt Flow	41	47	25	750	581	15

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	938	-230	-	-
HCM Lane V/C Ratio	0.027	-0.384	-	-
HCM Control Delay (s)	8.9	0	30.1	-
HCM Lane LOS	A	A	D	-
HCM 95th \%tile Q(veh)	0.1	-	1.7	-

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			A	F	
Traffic Vol, veh/h	11	11	6	462	369	5
Future Vol, veh/h	11	11	6	462	369	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	56	56	86	86	84	84
Heavy Vehicles, \%	0	0	10	10	11	11
Mvmt Flow	20	20	7	537	439	6

	Minor2	Major1			Major2	
Major/Minor	Min					
Conflicting Flow All	993	442	445	0	-	0
\quad Stage 1	442	-	-	-	-	-
\quad Stage 2	551	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.2	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.29	-	-	-
Pot Cap-1 Maneuver	274	620	1074	-	-	-
\quad Stage 1	652	-	-	-	-	-
Stage 2	581	-	-	-	-	-

Platoon blocked, \%
Mov Cap-1 Maneuver 2726201074 -

Mov Cap-2 Maneuver	272	-	-	-	-	-
Stage 1	646	-	-	-	-	-
Stage 2	581	-	-	-	-	-
Approach	EB	NB	SB			
HCM Control Delay, s	15.6	0.1	0			
HCM LOS	C					

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	1074	-	378	-
-				
HCM Lane V/C Ratio	0.006	-0.104	-	-
HCM Control Delay (s)	8.4	0	15.6	-
HCM Lane LOS	A	A	C	-
HCM 95th \%tile Q(veh)	0	-	0.3	-

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	17			\uparrow	\uparrow	
Traffic Vol, veh/h	17	22	12	323	440	20
Future Vol, veh/h	17	22	12	323	440	20
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	81	81	90	90	74	74
Heavy Vehicles, $\%$	6	6	8	8	5	5
Mvmt Flow	21	27	13	359	595	27

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	930	-	355	-
-				
HCM Lane V/C Ratio	0.014	-0.136	-	-
HCM Control Delay (s)	8.9	0	16.7	-
HCM Lane LOS	A	A	C	-
HCM 95th \%tile Q(veh)	0	-	0.5	-

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	1008	-	325	-
-				
HCM Lane V/C Ratio	0.009	-0.073	-	-
HCM Control Delay (s)	8.6	0	17	-
HCM Lane LOS	A	A	C	-
HCM 95th \%tile Q(veh)	0	-	0.2	-

		Intersection				
Int Delay, s/veh	1					
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			\uparrow	\uparrow	
Traffic Vol, veh/h	19	24	13	357	486	22
Future Vol, veh/h	19	24	13	357	486	22
Conflicting Peds, \#/hr		0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#		-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	81	81	90	90	74	74
Heavy Vehicles, \%	6	6	8	8	5	5
Mvmt Flow	23	30	14	397	657	30

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	879	-	314	-
-				
HCM Lane V/C Ratio	0.016	-0.169	-	-
HCM Control Delay (s)	9.2	0	18.8	-
HCM Lane LOS	A	A	C	-
HCM 95th \%tile Q(veh)	0.1	-	0.6	-

	Intersection					
Int Delay, s/veh	0.5					
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	\uparrow	
Traffic Vol, veh/h	10	7	9	466	516	10
Future Vol, veh/h	10	7	9	466	516	10
Conflicting Peds, \#/hr		0	0	0	0	0
Sign Control Stop		Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#		-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	63	63	93	93	88	88
Heavy Vehicles, \%	7	7	6	6	5	5
Mvmt Flow	16	11	10	501	586	11

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	960	-288	-	-
HCM Lane V/C Ratio	0.01	-0.094	-	-
HCM Control Delay (s)	8.8	0	18.8	-
HCM Lane LOS	A	A	C	-
HCM 95th \%tile Q(veh)	0	-	0.3	-

	Intersection					
Int Delay, s/veh	1.1					
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			\uparrow	\uparrow	
Traffic Vol, veh/h	21	27	15	394	536	24
Future Vol, veh/h		27	15	394	536	24
Conflicting Peds, \#/hr		0	0	0	0	0
Sign Control Stop		Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	\# 0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	81	81	90	90	74	74
Heavy Vehicles, \%	6	6	8	8	5	5
Mvmt Flow	26	33	17	438	724	32

HCM LOS C

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR	
Capacity (veh/h)	828	-	274	-	-
HCM Lane V/C Ratio	0.02	-0.216	-	-	
HCM Control Delay (s)	9.4	0	21.7	-	-
HCM Lane LOS	A	A	C	-	-
HCM 95th \%tile Q(veh)	0.1	-	0.8	-	-

	Intersection					
Int Delay, s/veh	0.6					
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*			\uparrow	个	
Traffic Vol, veh/h	11	7	10	514	569	11
Future Vol, veh/h		7	10	514	569	11
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#		-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	63	63	93	93	88	88
Heavy Vehicles, \%	7	7	6	6	5	5
Mvmt Flow	17	11	11	553	647	13

Minor Lane/Major Mvmt	NBL	NBTEBLn1	SBT	SBR
Capacity (veh/h)	909	-	245	-
-				
HCM Lane V/C Ratio	0.012	-0.117	-	-
HCM Control Delay (s)	9	0	21.6	-
HCM Lane LOS	A	A	C	-
HCM 95th \%tile Q(veh)	0	-	0.4	-

Appendix F

Auxiliary Lanes Analysis

Left Turn Lane Warrant for the Existing PM Peak Hour for CR 28 and Moore Drive Intersection

Right Turn Lane Warrant for the Existing PM Peak Hour for CR 28 and Moore Drive Intersection

Appendix G

Synchro Reports for the Traffic Conditions

with the Developments

Intersection						

Major/Minor	Minor2	Major1		Major2			
Conflicting Flow All	1123	549	551	0	-	0	
Stage 1	549	-		-	-	-	
Stage 2	574	-		-	-	-	
Critical Hdwy	6.4	6.2	4.2	-	-	-	
Critical Hdwy Stg 1	5.4	-		-	-	-	
Critical Hdwy Stg 2	5.4	-		-	-	-	
Follow-up Hdwy	3.5	3.3	2.29	-	-	-	
Pot Cap-1 Maneuver	230	539	980	-	-	-	
Stage 1	583	-		-	-	-	
Stage 2	567	-		-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	228	539	980	-	-	-	
Mov Cap-2 Maneuver	228	-	-	-	-	-	
Stage 1	578	-	-	-	-	-	
Stage 2	567	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	17.5		0.1		0		
HCM LOS	C						
Minor Lane/Major Mvm		NBL	NBT	BLn1	SBT	SBR	
Capacity (veh/h)		980		320	-	-	
HCM Lane V/C Ratio		0.006	-	0.1	-	-	
HCM Control Delay (s)		8.7	0	17.5	-	-	
HCM Lane LOS		A	A	C	-	-	
HCM 95th \%tile Q(veh)		0	-	0.3	-	-	

Intersection						

Major/Minor	Minor2	Major1			Major2		
Conflicting Flow All	1209	588	590	0	-	0	
Stage 1	588	-		-	-	-	
Stage 2	621	-		-	-	-	
Critical Hdwy	6.4	6.2	4.2	-	-	-	
Critical Hdwy Stg 1	5.4	-	.	-	-	-	
Critical Hdwy Stg 2	5.4	-		-	-	-	
Follow-up Hdwy	3.5	3.3	2.29	-	-	-	
Pot Cap-1 Maneuver	204	513	947	-	-	-	
Stage 1	559	-		-	-	-	
Stage 2	540	-		-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	202	513	947	-	-	-	
Mov Cap-2 Maneuver	202	-	-	-	-	-	
Stage 1	553	-	-	-	-	-	
Stage 2	540	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	19.2		0.1		0		
HCM LOS	C						
Minor Lane/Major Mvm		NBL	NBT	BLn1	SBT	SBR	
Capacity (veh/h)		947	-	290	-	-	
HCM Lane V/C Ratio		0.007		0.123	-	-	
HCM Control Delay (s)		8.8	0	19.2	-	-	
HCM Lane LOS		A	A	C	-	-	
HCM 95th \%tile Q(veh)		0	.	0.4	-	-	

Intersection						

Major/Minor	Minor2	Major1		Major2			
Conflicting Flow All	1301	629	632	0	-	0	
Stage 1	629	-		-	-	-	
Stage 2	672	-		-	-	-	
Critical Hdwy	6.4	6.2	4.2	-	-	-	
Critical Hdwy Stg 1	5.4	-	.	-	-	-	
Critical Hdwy Stg 2	5.4	-		-	-	-	
Follow-up Hdwy	3.5	3.3	2.29	-	-	-	
Pot Cap-1 Maneuver	179	486	913	-	-	-	
Stage 1	535	-		-	-	-	
Stage 2	511	-	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	177	486	913	-	-	-	
Mov Cap-2 Maneuver	177	-	.	-	-	-	
Stage 1	529	-	-	-	-	-	
Stage 2	511	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	21.4		0.1		0		
HCM LOS	C						
Minor Lane/Major Mvm		NBL	NBT	BLn1	SBT	SBR	
Capacity (veh/h)		913	-	259	-	-	
HCM Lane V/C Ratio		0.008		0.152	-	-	
HCM Control Delay (s)		9	0	21.4	-	-	
HCM Lane LOS		A	A	C	-	-	
HCM 95th \%tile Q(veh)		0	.	0.5	-	-	

Intersection						

Intersection						

Intersection						

Intersection						

Intersection							

Intersection						

$\frac{\text { Major/Minor }}{\text { Conflicting Flow All }}$	Minor2	Major1 Major2					
	2127	1018	1024	0	-	0	
Stage 1	1018	-	-	-	-	-	
Stage 2	1109	-	-	-	-	-	
Critical Hdwy	6.47	6.27	4.16	-	-	-	
Critical Hdwy Stg 1	5.47	-	-	-	-	-	
Critical Hdwy Stg 2	5.47	-	-	-	-	-	
Follow-up Hdwy	3.563	3.363	2.254	-	-	-	
Pot Cap-1 Maneuver	53	282	663	-	-	-	
Stage 1	341	-	-	-	-	-	
Stage 2	309	-	-	-	-	-	
Platoon blocked, \%				-	-	-	
Mov Cap-1 Maneuver	51	282	663	-	-	-	
Mov Cap-2 Maneuver	51	-	-	-	-	-	
Stage 1	327	-	-	-	-	-	
Stage 2	309	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	79.9		0.1		0		
HCM LOS	F						
Minor Lane/Major Mvmt		NBL	NBT	BLn1	SBT	SBR	
Capacity (veh/h)		663	-	75	-	-	
HCM Lane V/C Ratio		0.016		0.381	-	-	
HCM Control Delay (s)		10.5	0	79.9	-	-	
HCM Lane LOS		B	A	F	-	-	
HCM 95th \%tile Q(veh)		0	-	1.5	-	-	

[^0]: 1 Transportation Association of Canada (TAC). Geometric Design Guide for Canadian Roads: Design Controls, Classification and Consistency. Transportation Association of Canada, 2017.

[^1]: 2 Trip Generation Manual, Vol. 1, 2, and 3, 8th ed. ITE, Washington, D.C., 2008.

[^2]: ${ }^{3}$ - Traffic Impact Statement. Gulfshore Playhouse Planned Development - Rezone.

 - Traffic Impact Study. Graystone Quarry Amphitheatre, Thompson's Station, Tennessee.
 - Traffic Impact Study. Lakeview Amphitheatre, Onondaga County, NewYork.

[^3]: ${ }^{4}$ Transportation Association of Canada (TAC). Geometric Design Guide for Canadian Roads: Design Controls, Classification and Consistency. Transportation Association of Canada, 2017.

